

TECHNOLOGY - VIDEO - STEREO - COMPUTERS - SERVICE

AUTO SOUND

Great systems Great installations

R-E ROBOT
Build a controller board

EARLY DAYS OF RADIO

Amplifier

 beginningsTV SIGNAL
DESCRAMELING
Digital audio encoding BUILD A DIGITALL SPEEDOMETER
For a high-tech dashboard
Compurfaivices
IBM's new PC's

NOW GET SCOPE, COUNTER AND DMM INPUT ALL AT ONCE THROUGH ONE PROBE!

Gated frequency measurement. B sweep triggering during the intensified portion of the A sweep. Intensified portion frequency is measured with the counter/timer/ DMM.

4382888.5

Delay time measurement. Delay time from the start of A sweep to the start of the B sweep is measured with crystal accuracy.

Channel 1 dc volts measurement. The average dc component of a waveform is measured directly through channel 1 with direct digital fluorescent readout.

The Tek 2236 combines 100 MHz , dual timebase scope capability with counter/timer/DMM functions integrated into its vertical, horizontal and trigger systems. For the same effort it takes to display a waveform you can obtain digital readout of frequency, period, width, totalized events, delay time and Δ-time to accuracies of 0.001%.
The same probe is used to provide input for the CRT display and the digital measurement system, resulting in easy set-up, greater measurement confidence and reduced circuit loading. Probe tip volts can also be measured through the Ch 1 input.

Precision measurements

 at the touch of a button. Auto-ranging frequency, period, width and gated measurements are push-button-simple. And the 2236 offers an independent floating 5000 count, auto-ranging multimeter with side inputs for DC voltage mea-
surements to 0.1% A built-in, auto-ranging ohmmeter provides resistance measurements from 0.01Ω to $2 G \Omega$-as well as audible continuity. Automatic diode/junction detection and operator prompts serve to simplify set-up and enhance confidence in your measurements.

The 2236: scope, counter, timer, DMM plus a 3-year warranty -all for just \$2,650.
Contact your nearest distributor or call Tek toll-free. Technical personnel on our direct-line will answer your questions and expedite delivery. Orders include probes, 30 -day free trial and service worldwide.
Call Tek direct:
1-800-433-2323 for
video tape or literature,
1-800-426-2200 for
application assistance or ordering information.
In Oregon, call collect:
1-627-2200

SPECIAL SECTION

31 GREAT SYSTEMS
A look at the latest and the greatest in autosound.
Frank Vizard
39 GREAT INSTALLATIONS
Some classic autosound installations, and a few unusual ones, too.
Frank Vizard

44 R-E ROBOT

Part 8. Building the control board.
Steven E. Sarns
47 DIGITAL SPEEDOMETER FOR YOUR CAR
An accurate, eye-catching upgrade for your dashboard.
Ross Ortman
79 PC SERVICE
Use the direct-etch foil patterns to make circuit boards for the digital speedometer.

TECHNOLOGY

6 VIDEO NEWS
 A review of the fast-changing video scene. David Lachenbruch

58 TV-SIGNAL SCRAMBLING
Part 9. Digitally scrambled audio William Sheets and Rudolf F. Graf

62 SATELLITE TV
HDTV and DBS
Bob Cooper, Jr.
26 DRAWING BOARD
Dynamic memories. Robert Grossblatt

RADIO
52 EARLY DAYS OF RADIO
Early amplifiers
Vaughn D. Martin
EQUIPMENT REPORTS

15 Avcom PSA-35A Portable Spectrum Anaylzer

COMPUTERPIGEST

66 EDITOR'S WORKBENCH
IBM's new machines and keyboard reviews

70 FROM KEYPRESS TO SCAN CODE
How PC keyboards work. Jeff Holtzman

74 WORKING WITH SURPLUS KEYBOARDS
Interface any keyboard with your computer. Robert Grossblatt

DEPARTMENTS

102 Advertising and Sales Offices
102 Advertising Index
7 Ask R-E
103 Free Information Card
12 Letters
84 Market Center
21 New Products
5 What's News

DIGITAL AUDIO TAPE: It's coming in the future. We'll cover the technical details of this promising new audio tape format in an up-coming issue.

Cover
 Hi-Fi autosound has come a long way since the days of 8 -track tape. This month, we'll look at some of the latest and the greatest that the autosound industry has to

 offer, like Pioneer's DEX-77 CD player and tuner. Included in our discussions are high-tech receivers, cassette players, CD players, CD changers, and speakers, and what makes them special. We'll also look ahead to the next wave in autosound, the DAT player.But there's more to great mobile sound than just selecting a system and throwing it in your car. And today's downsized vehicles offer tough challenges for even the most skillful installer. However, with effort, electrifying results can be achieved. To prove that, we'll show you how car manufaclurers and independent installers have merged automobiles and high-fidelity sound systems to produce concert halls on wheels.

Our two-part special look at autosound begins on page 31.

NEXT MONTH

THE AUGUST ISSUE IS ON SALE JULY 2

HDTV

The next wave in television is brought into sharp focus.

BUILD AN SCA RECEIVER

Build this special FM receiver and hear
what you've been missing.

BUILD THE TALKING BOX

It digitizes your speech and stores it electronically.

R-E ROBOT

Part 9 looks at the robot's control language

TRANSISTOR AMPLIFIER DESIGN

Hints and pointers for your next project.

RadiaElectronics

Hugo Gernsback (|884-1967) tounder
M. Harvey Gernsback, editor-in-chief, emeritus

Larry Steckler, EHF, CET, editor-in-chief and publisher

EDITORIAL DEPARTMENT

Art Kleiman, editorial director Brian C. Fenton, managing editor Carl Laron, WB2SLR, associate editor Jeffrey K. Holtzman,
assistant technical editor
Robert A. Young, assistant editor Julian S. Martin, editorial associate Byron G. Wels, editorial associate M. Harvey Gernsback,
contributing editor Jack Darr, CET, service editor Roberi F. Scolt,
semiconductor editor
Herb Friedman,
communications editor
Bob Cooper, Jr. satellite-TV editor
Robert Grossblatt, circuits editor
Larry Klein, audio editor
David Lachenbruch,
contributing editor
Richard D. Fitch,
contributing editor
Teri Scaduto, editorial assistant

PRODUCTION DEPARTMENT
Ruby M. Yee, production director Rolert A. W. Lowndes, editorial production
Andre Duzant, technical illustrator
Karen Tucker, advertising production
Marcella Amoroso, production traffic
CIRCULATION DEPARTMENT
Jacqueline P. Cheeseboro, circulation director
Wendy Alanko,
circulation analyst
Theresa Lombardo,
circulation assistant
Typography by Mates Graphics
Cover Foto by Brian Kosoli
Radio-Electronics is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.
Microfilm \& Microfiche editions are available. Contact circulation department for details.

Advertising Sales Offices listed on page 102.

the fourth law of robolics
A robot shall make learning fun for man and thereby improve the quality of life for mankind.

A robot is a robot is

 a robot... was a robot. Unill HERO 2000.HERO 2000 is much more than a robot. It's a walking, talking16-bit computer. With 54K ROM and 24K RAM expandable to more than half a megabyte. And a fully articulated arm with five axes of motion. Yours to program. Command. Modify and expand. Total system access and solderless experimenter boards provide almost limitless possibilities. Its remote RF console with ASCII keyboard gives total control. Available with three self-study co urses. Backed by Heath Company, world leader in electronic kits. Build your cwn HERO 2000. Or buy it assembled. Have fun learning skills that translate directly to the world of work.
 builder

Mail coupon today to reseive a FREE Heathkit Catalog featuring HERO 2000. Mail to: Heath Company

Dept. 020-558
Benton Harbor, Michigan 49022 for latest Heathkit Cetalog.

Oops Proof. Now Even Better.

Industry's Most Popular Heavy-Duty DMMs... Now Even Better With Dual-Fuse Protection And A Tougher Case.

The tough just got tougher. When Becknan Industrial introduced heavyduty DMMs tough enough to withstand accidental drops, input overloads and destructive environments, they quickly became the industry's most popular.

Now they're even tougher, thanks to the best dual-fuse protection you can buy and a new case Covered by a one-year, no-fault guarantee against damage to the meter other than gross abuse

For overloads, all voltage ranges can withstand transients up to 6 KV . Resistance ranges are protected to 600 volts. Current ranges are protected by a $2 \mathrm{amp} / 600$ volt fuse The 10 amp range is protected by a 15 amp, 600 volt high energy fuse with 100.000 amp interrupt rating.

Our heavy-duty DMMs can with stand accidental drops, literally bouncing back for more, thanks to a new case made of Valox ${ }^{(8)}$ one of the most impact and corrosive chemical resistant thermoplastics around. Sensitive components are shock mounted for impact protection.
liven oil, water and industrial grime can't keep our heavy-duty DMMs away from the action. Everything is sealed with 0 -rings for maximum protection.

Of course, even the toughest DMM isntt much good if it cant deliver accuracy and the right combination of capabilities at the right price.

Check the HD DMM specs for yourself: Maximum voltage rating of 1500 volts DC, 1000 volts AC; tested to 40 KHz ; diode test function; and exclusive INSTA-Ohm ${ }^{\text {® }}$ capability, now with an audible beeper, to make your HD even easier to use.

What's more, you can select just the model you need without paying extra. Start with the economical HI)-100 at $\$ 169.00$ for solid, all-around meter performance Choose the HD-110 with continuity beeper. Or, the HD-I10T that lets you select Farenheit or Celsius temperature measurement with a simple field adjustment, accurately measuring from $-4^{\circ} \mathrm{F}$ to $+1999^{\circ} \mathrm{F}$, and works with any K-type thermocouple. It also has a measurement range of $32^{\circ} \mathrm{F}$ to $392^{\circ} \mathrm{F}$
with the thermocouple provided.
You can even get the true RMS capability on the HD-130,
or with a $41 / 2$ digit display required by the HD)-140's accuracy.

heavy duty DMMS	HD100	HOHO	HOTHOT	H0130	H0140
Digits	$31 / 2$				41/2
Accuracy (Vdc)	0.25\%			0.1\%	0.05\%
Input Impedance	22 Megohms				10 Megohms
AC Conversion Type	Average			True RMS	True RMS
Bandwidth (AC Volts)	10KHz			40KHz	10KHz
Current Range Min. Reading	0.14 A				$0.01 \mu \mathrm{~A}$
Max. Reading	2A	10A (20A for 30 Seconds			
Continuity Beeper		\checkmark			
Battery Life (Alkaine type)	2000 Hours				100 Hours

Visit your local Beckman Industrial distributor today. Compare And discover why the toughest are tougher than ever.

What's News

Superconduction possible at room temperatures?

Recent reports in superconductivity research make it seem that
the science is on the verge of performing the impossible-developing a material that has nearly no resistance at room temperatures.

New Solid-state battery operates at 200° Celsius

A high-performance hermetically sealed 2.4 -volt solidstate battery that will operate continuously at $200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right)$ has been developed by the Eveready Battery Co. The high-temperature performance of the new battery has been achieved while preserving both the high discharge rate (greater than that of most conventional solid-state batteries) and the outstanding shelf life of solidstate batteries.

A patented isostatic-compression process (see "What's News", Radio-Electronics, Feb. 1986) is used to assemble the batteries from a lithium anode, an inorganic
solid-state electrolyte, and a titanium disulphide cathode. The high temperature-far above the limits of ordinary battery sys-tems-can be tolerated because there are no liquids in the battery. That feature makes it particularly attractive for use in applications that require high-temperature memory retention or sensor operation (as in automotive engine compartments, or in military applications). It will also survive heavy shock or vibration at $200^{\circ} \mathrm{C}$.

Initial sample batteries will be provided in 2.4 - and 4.8 -volt configurations. Each will contain two 40-milliampere-hour cells.

ONE IOUGH CUSTOMER. This new Eveready solid-state battery can operate at temperatures as high as $200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right)$ and withstand severe shocks. It is ideal for applications in harsh environments.

Superconductivity is the condition in which a metal loses all its electrical resistance. That normally happens only at extreme low temperatures, near absolute zero ($-459.4^{\circ} \mathrm{F}$). If conductors could be made superconductive at practical temperatures, our whole electrical world could be revolutionized. Motors could be drastically miniaturized, computers could be made to operate at even higher speeds, and high-voltage transmission lines could be abandoned. In short, a complete change in most electrical techniques could take place.

Since superconductivity was discovered in 1911, in metals at $4^{\circ} \mathrm{C}$ above absolute zero (4° Kelvin), the threshold of superconductivity has been raised in slow steps, largely through the discovery of new materials. In 1973, a maximum of 23 degrees Kelvin $\left(-419^{\circ} \mathrm{F}\right)$ was apparently obtained.

However, in January 1986, a breakthrough occurred. Superconductivity was obtained in a new class of materials at $30^{\circ} \mathrm{K}$. This past December, a new record was set at $39^{\circ} \mathrm{K}$. In February 1987, superconductivity at a temperature of $98^{\circ} \mathrm{K}$ was reached using an oxide material composed of yttrium, barium, copper, and oxygen, a combination that would be a pretty fair resistor at ordinary temperatures.

Since then there have been reports of "indications" of superconductivity at $240^{\circ} \mathrm{K}\left(-28^{\circ} \mathrm{F}\right)$ and even hints of "superconducting phenomena" at room temperature. Old theories have been abandoned, and many scientists believe that there is no theoretical temperature limit for superconductivity. Research is going on at a feverish pace, with new results being reported daily, or even faster. One report from Bell Labs bore the dateline: Update, noon 3/19/87.

VIDEO News

DAVID LACHENBRUCH,
CONTRIBUTING EDITOR

- Sony answers Super VHS. Sony has fired an answering salvo in the latest phase of the war between VHS and Beta. And in announcing a new version of their Beta recording format, called ED Beta (Extended Definition Beta), Sony appears to have recaptured its long-held technological advantage over VHS.

Like Super VHS (Video News, June 1987), ED Beta provides a better-than-broadcast-quality picture. However, Sony's ED-Beta system is claimed to provide 500 lines of horizontal definition, as compared with about 430 for Super VHS. Also, ED Beta raises the luminance bandwidth to $6.8-8.6 \mathrm{MHz}$, as opposed to Super VHS's $5.4-7 \mathrm{MHz}$, with a deviation of 1.8 MHz (vs. Super VHS's l.6). Where Super VHS uses a highcoercivity oxide tape, ED Beta uses metal particle tape in a standard Beta cassette. As in the SuperVHS system, the new Beta machines can play back the older conventionally recorded tapes and record tapes in the conventional (standard Beta) manner, but the new higher definition tapes can't be played on standard machines.

ED-Beta cassettes use newly developed TSS (Tilted Sputtered Sendust) heads and a tape stabilizer system to reduce jitter. Sony claims third- and fourth-generation copies made with ED Beta are almost indistinguishable from the original. Super-VHS machines will be available in the United States soon. Sony says ED Beta will be on the Japanese market this fall, but hasn't disclosed export plans. Both Super VHS and ED Beta were developed in anticipation of a new compatible high-resolution broadcasting system in Japan, which could be inaugurated as early as next year.

- Next stop, \mathbf{S} terminal. The back of an up-to-date TV set has begun to resemble a piece of Swiss cheese. There are video inputs and outputs, audio inputs and outputs, RGB terminals, etc. Now, add the "S" terminal to all of that. That's the name JVC gives to a two-connector input for the Y (luminance) and C (chrominance) output signals of the Super-VHS recorder. Of course, Super-VHS recorders will also have standard RF and video/audio outputs, but to get the super
performance of the system, you will ne3d a highresolution set equipped with Y and C inputs. JVC, in fact, has already introduced four monitorreceivers with S terminals. Of course, a good monitor receiver without a Y/C input presumably can be modified to inject the super signal into the proper circuits. It's probably only a matter of time before we see Sony TV's with "ED" terminals.
- Digital videodisc. A completely unexpected development brought the audience at a recent CDROM seminar to its feet with a spontaneous round of applause. A project initiated by RCA at what is now SRI's David Sarnoff Research Center (Radio-Electronics, June 1987) has resulted in what could be the first relatively low-cost digitalstorage system for full-motion, full-resolution video pictures. Until now, pictures stored digitally on CD-ROM's have been stills, or at best, limitedmotion, cartoon-like diagrams. The demonstration by GE/RCA made it clear that the developers' claim of one full hour or more of digital full-motion video plus audio on a standard five-inch optical Compact Disc is now attainable. The developers say that production models could be available for less than $\$ 1,000$ within two years. As shown on a PC monitor, the system currently has a resolution of 256×200 pixels, which is nearly TV quality.

The DVI (Digital Video Interactive) system uses data compression to get full motion on the disc. Without compression, only 30 seconds of full-motion video would fit on a five-inch disc and it would require a full hour to play it back. The home-video potential of DVI is clear, Sarnoff Center engineers say, but they stress the interactive capabilities of the system. "This is much too powerful a medium to just put movies on," said one. The DVI breakthrough casts some doubt on the future of CD-I (Compact DiscInteractive), for which standards have just been finalized to permit still video along with data and audio, as well as on Philips' CDV (Compact Disc Video), essentially a reinvention of the videodisc that provides five minutes of analog video and 20 minutes of digital audio on a Compact Disc
(Radio-Electronics, March 1987).
R-E

Ask R－E

CROSSOVER NETWORKS

I am putting together a speaker system and need information on the values for components in the crossover network．－S．P．，Corona， NY．

A two－way crossover network consists of a low－pass filter to feed the woofer and a high－pass filter to feed the tweeter．The high－and low－frequency outputs are equal at the crossover frequency．The sharper the desired rate of at－ tenuation outside the crossover point，the more complex the di－ vider network becomes．The rate of attenuation is usually expressed in terms of decibels per octave． （An octave is the interval between two frequencies that have a ratio of $2: 1$ or $1: 2$ ．For example，if the crossover is at 1 kHz ，one octave below is 500 Hz and one octave above is 2 kHz ．）

If you are simply adding a tweeter to an existing system，you can use a capacitor in series with the tweeter as a high－pass net－ work．The value of the capacitor in microfarads is determined from：

$$
\mathrm{C}=79,6000 /\left(f_{\mathrm{C}} \times \mathrm{R}_{\mathrm{O}}\right)
$$

where f_{C} is the crossover or cutoff frequency and R_{O} is the speaker impedance．The simplest cross－ over network is shown in Fig． 1. There，we have a capacitor feeding the high frequencies to the tweeter and an inductor feeding the lows to the woofer．That circuit is a single element of a constant－ resistance type filter．The values of the inductor in millihenries and the capacitor in microfarads are easily found from the following equations：

$$
\begin{gathered}
\mathrm{L}=\left(159 \times \mathrm{R}_{\mathrm{W}}\right) / f_{\mathrm{C}} \\
\mathrm{C}=159,000 /\left(f_{\mathrm{C}} \times \mathrm{R}_{\mathrm{T}}\right)
\end{gathered}
$$

where R_{W} is the impedance of the

Now test and restore every CRT on the market．．．without ever buying another adaptor socket or coming up embarrassingly short in front of your customer ．．or your money back

with the new improved CR70＂BEAM BUILDER＂TM
Universal CRT Tester and Restorer
Patented
$\$ 995$
Have you ever？
Thrown away a good TV CRT，data display CRT，or scope CRT that could have been used for another two or three years because you had no way to test or restore it？
Lost valuable customers because you advised them that they needed a new CRT when another technician came along and restored the CRT for them？
Lost the profitable extra $\$ 35$ or more that you could have gotten for restoring a CRT while on the job and locked in the profitable CRT sale later？
Avoided handling profitable trade－ins or rentals because you were afraid you＇d have to replace the picture tube when you could have restored it？
Had a real need to test a CRT on the job，but didn＇t have the right adaptor socket or setup information in your setup book？
If any of these things have happened to you，CALL TODAY，WATS FREE， 1－800－843－3338，for a FREE 15 day Self Demo．
＂BEAM BUILDER＂is a trademark of Sencore，Inc．

Call Today Wats Free 1－800－843－3338
曰三NС〇円に
3200 Sencore Drive Sioux Falls，SD 57107 605－339－0100 In SD Only with your time in mind．

V-223 \$695. Save \$100!

DC to 20 MHz , Dual Channels, Delayed Sweep

- CRT: 6 " rectangular with $2 \mathrm{k} V$ Potential - Vertical Deflection: Ver. Modes: CH1, CH2, ALT, CHOP, ADD (DIFF). Bandwidth DC to $20 \mathrm{MHz}(-3 \mathrm{~dB})$. Sensitivity: $5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div. Max Sensitivity: $1 \mathrm{mV} /$ div at X 5 Mag. Extends.
- X-Y Operation (CH1:X, CH2:Y): 3° or less from $D C$ to 50 kHz
- Weight: $7 \mathrm{~kg}(15.5 \mathrm{lb})$

V-212 \$465. Save \$150! \$847. Save \$150!

DC to 20MHz, Dual Channels

- CRT: $6^{\prime \prime}$ rectangular with $2 k \mathrm{~V}$
- Vertical Deflection: Ver. Modes: CH1 $\mathrm{CH} 2, \mathrm{ALT}, \mathrm{CHOP}, \mathrm{ADD}$ (DIFF). Bandwidth: DC to $20 \mathrm{MHz}(-3 \mathrm{~dB})$. Sensitivity 5 mV /div to $5 \mathrm{~V} / \mathrm{div}$. Max Sensitivity: $1 \mathrm{mV} /$ div at X 5 Mag. Extends.
- X-Y Operation (CH1:X, CH2:Y): 3° or less from DC to 50 kHz
- Weight: $6 \mathrm{~kg}(13.3 \mathrm{lb})$
$\mathrm{V}-222 \quad$ Same as above,
and DC offsel voltage monitor outlet
available for external counter or DVM.
\$515. Save \$200!
 WM. B. ALLEN SUPPLY COMPANY ALLEN SQUARE
The 300 Block • North Rampart Street New Orleans • Louisiana 70112-3106 NATIONWIDE 800 535-9593 LOUISIANA 800-462-9520 NEW ORLEANS (504) 525-8222
- American Express • Visa • MasterCard •

VC-6020 \$1750. Save \$200!

1MHz Sampling, Dual Channels - Usable as both a conventional oscilloscope and a digital storage scope.

- CRT: $6^{"}$ rectangular with $2 k V$ Potential - Vertical Deflection: Ver. Modes: CH1, CH2, DUAL, ADD (DIFF). Bandwidth: DC to $20 \mathrm{MHz}(-3 \mathrm{~dB})$. Sensitivity: $5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$. GPIB, IEEE 488
- Digital Storage Functions: Max Sampling Rate: 1 MHz (for Dual Channels) Ver. Resolution: 8 bit. Max. Storage Freq: $100 \mathrm{k} \mathrm{Hz}(-3 \mathrm{~dB})$. Memory Capacity: 1k words/ch. Hor. Resolution: 100 point/div. Sweep Time: $0.1 \mathrm{~m} / \mathrm{div}$ to $1 \mathrm{~s} / \mathrm{div}$. Pretrigger: Provided. Data output: Analog.

- Instant Hard Copy From Oscilloscopes - 5", 6" and 7"Hoods (Available separately @ \$51 ea. Please Specify size)
- Pistol Grip For Ease of Operation - Works on Any Make of Oscilloscope - Three Full Year Warranty

[^0]woofer， R_{T} is the impedance of the tweeter，and f_{C} is the crossover fre－ quency in hertz．The network＇s at－ tenuation is $6-\mathrm{dB}$ per octave．

Two types of filters are used in crossover networks．One is the M－ derived filter，which，in its basic form，has a rolloff at 12 dB per oc－ tave．Each half－section has two ca－ pacitors and two inductors．The inductors have different values，as do the capacitors．The other type of filter is the constant－resistance type．We are showing the latter here because the values of both capacitors are equal；the same is true of the two inductors．Both the constant－resistance and M －de－ rived filters can be arranged so the speakers are fed either in series or in parallel．

Figure 2 shows the four most common constant－resistance net－ works．Series and parallel quarter－ section filters with 6 －dB／octave rolloffs are shown in Figs．2－a and

FIG． 1
2－b，respectively；half－sections with $12-\mathrm{dB}$／octave rolloffs are shown in Figs．2－c and 2－d，respec－ tively．The values of the inductors in henries and capacitors in farads in those networks are as follows：

$$
\begin{aligned}
& \mathrm{L} 1=\mathrm{R}_{\mathrm{O}} /\left(2 \pi t_{\mathrm{C}}\right) \\
& \mathrm{L} 2=\mathrm{R}_{\mathrm{O}} /\left(2 \sqrt{2 \pi t_{\mathrm{C}}}\right) \\
& \mathrm{L} 3=\left(\sqrt{2 \mathrm{R}_{\mathrm{O}}}\right) /\left(2 \pi t_{\mathrm{C}}\right) \\
& \mathrm{C} 1=1 /\left(2 \pi t_{\mathrm{C}} \mathrm{R}_{\mathrm{O}}\right) \\
& \left.\mathrm{C} 2=\sqrt{2 /\left(2 \pi t_{\mathrm{C}} \mathrm{R}_{\mathrm{O}}\right.}\right) \\
& \mathrm{C} 3=1 /\left(2 \sqrt{2 \pi t_{\mathrm{C}} \mathrm{R}_{\mathrm{O}}}\right)
\end{aligned}
$$

where f_{C} is the crossover frequen－ cy in hertz and R_{O} is the speaker （and input）impedance in ohms．

Your choice of a series or paral－ lel arrangement will probably be determined by component avail－ ability and cost．For example， when we compute the values for

Walk＂tough dog＂troubles out of any TV \＆VCR in half the time ．．．or your money back

with the exclusive，patented， VA62 Universal Video Analyzer ．．$\$ 3,295$

Would you like to？

Reduce analyzing time：Isolate any problem to one stage in any TV or VCR in minutes，without breaking a circuit connection，using the tried and proven signal substitution method of troubleshooting？
Cut costly callbacks and increase customer referrals by completely performance testing TVs \＆VCRs before they leave your shop？Own the only analyzer that equips you to check all standard and cable channels with digital accuracy？Check complete，RF，IF，video and chroma response of any chassis in minutes without taking the back off the receiver or removing chassis plus set traps dynamically right on CRT too？Simplify alignment with exclusive multiburst pattern？
Reduce costly inventory from stocking yokes，flybacks，and other coils and transformers，for substitution only，with the patented Ring－ ing Test．Run dynamic proof positive test on any yoke，flyback，and inte－ grated high voltage transformer ．．．in－or out－of－circuit？
Protect your future by servicing VCRs for your customers before they go to your competition？Walk out＂tough dog＂troubles in any VCR chromi－ nance or luminance circuit－stage－by－stage－to isolate problems in minutes？Have proof positive test of the video record／play heads before you replace the entire mechanism？
Increase your business by meeting all TV and VCR manufacturers＇ requirements for profitable warranty service work with this one universally recommended analyzer？
To prove it to yourself，CALL TODAY，WATS FREE，1－800－843－3338，for a FREE Self Demo ．．or learn how the VA62 works first by calling for your free simplified operation and application instruction guide，worth $\$ 10.00$ ．

Call Today Wats Free 1－800－843－3338
S三N〇〇Fに
3200 Sencore Drive
Sioux Falls，SD 57107
605－339－0100 In SD Only

Increase your knowledge about all aspects of electronics

An absolutely no-risk guarantee.

Select 5 Books for only \$39 and get a Free Gift!

$2839 \quad \$ 15.95$

1672P \$12.95

$2753 \$ 23.95$

$1536 \quad \$ 14.95$

$2635 \quad \$ 19.95$

1665P \$17.95

1977 \$26.95

$1199 \mathrm{P} \$ 16.95$

TRANSDUCERS

$1793 \quad \$ 14.95$

$1586 \quad \$ 17.95$

1531P $\$ 11.50$

2655P \$16.95

$2758 \quad \$ 24.95$

Membership Benefits - Big Savings. In addition to this introductory offer, you keep saving substantially with members' prices of up to 50% off the publishers' prices. - Bonus Books. Starting immediately, you will be eligible for our Bonus Book Plan, with savings of up to 80% off publishers' prices. Club News Bulletins. 14 times per year you will receive the Book Club News, describing all the current selections-mains, alternates, extras-plus bonus offers and special sales, with hundreds of titles to choose from. - Automatic Order. If you want the Main Selection, do nothing and it will be sent to you automatically. If you prefer another selection, or no book at all, simply indicate your choice on the reply form provided. As a member, you agree to purchase at least 3 books within the next 12 months and may resign at any time thereafter. - Ironclad No-Risk Guarantee. If not satisfied with your books, return them within 10 days without obligation! - Exceptional Quality. All books are quality publishers' editions especially selected by our Editorial Board.
(Publishers" Prices Snown)

FREE guide to mail order sources for electronic parts and components
 A $\$ 6.95$
 Value!

2707 \$24.95

1987 ELECTRONICS BOOK CLUB, Blue Ridge Summit, PA 17214
All books are hardcover editions unless numbers are followed by a P for paperback.

1.) Electianics Brakicue
 P.O. Box 10, Blue Ridge Summit, PA 17214

Please accept my membership in the Electronics Book Club and send the 5 volumes circled below, plus my FREE copy of The Electronics Buyer's Guide (345P). billing me $\$ 3.95$ plus shipping and handling charges. If not satisfied, I may return the books within ten days without obligation and have my membership canceled. I agree to purchase at least 3 books at regular Club prices (plus shipping/handling) during the next 12 months, and may resign any time thereafter.

728 P	1199 P	1250 P	1370	1529 P	1531 P	1532 P	1536	1586	1599 P
1604 P	1665 P	1672 P	1693	1775	1793	1909 P	1925	1977	2635
2645	2655 P	2707	2725	2753	2755	2758	2792	2795	2839

Name

Address
City
State/Zip
Valid for new members only. Foreign applicants will receive ordering instructions. Canada must remit in U.S. currency. This order subject to acceptance by the Electronics Book Club.

FIG． 2
the inductors and capacitors in the $12-\mathrm{dB}$ half－section networks，we find that the values of the capaci－ tors in the series configuration are twice that of those in the parallel configuration．On the other hand， the values of the inductors in the series configuration are half that of the inductors in the parallel con－ figuration．If you＇ve priced enam－ eled copper wire lately（used for winding the inductors），you＇ll real－ ize that economy will probably dictate using the series network．

Ideally，the capacitors should be paper or oil－filled types with a tol－ erance not greater than 10% ．Prac－ tically，we use non－polarized or back－to－back electrolytics．

The inductor must be wound with fairly heavy wire，such as 16 or 18 gauge，so its resistance will be negligible when compared to the speaker impedance．

R－E

Exclusive，triple patented dynamic cap and coil analyzing ．．．guaranteed to pinpoint your problem every time or your money back

The＂Z METER＂is the only LC tester that enables you to test all capacitors and coils dynamically－plus，it＇s now faster，more accurate，and checks Equivalent Series Resistance（ESR）plus small wire high resistance coils．
Eliminate expensive part substitution and time－consuming shotgun－ ning with patented tests that give you results you can trust every time Test capacitor value，leakage，dielectric absorption，and ESR dynamically； with up to 600 volts applied for guaranteed 100% reliable results－it＇s exclusive－it＇s triple patented．
Save time and money with the only 100% reliable，in－or out－of－circuit inductor tester available．Dynamically test inductors for value，shorts，and opens，automatically under＂dynamic＂circuit conditions．
Reduce costly parts inventory with patented tests you can trust．No more need to stock a large inventory of caps，coils，flybacks，and IHVTs． The＂Z METER＂eliminates time－consuming and expensive parts substitut－ ing with 100% reliable LC analyzing．
Turn chaos into cash by quickly locating transmission line distance to opens and shorts to within feet，in any transmission line
Test troublesome SCRs \＆TRIACs easily and automatically without investing in an expensive second tester．The patented＂Z METER 2 ＂even tests SCRs，TRIACs，and High－Voltage Diodes dynamically with up to 600 volts applied by adding the new SCR250 SCR and TRIAC Test Accessory for only $\$ 148$ or FREE OF CHARGE on Kick Off promotion．
To try the world＇s only Dynamic LC Tester for yourself，CALL TODAY， WATS FREE，1－800－843－3338，for a FREE 15 day Self Demo．

Call Today Wats Free 1－800－843－3338
S三NС〇Fに
3200 Sencore Drive
Sioux Falls，SD 57107
605－339－0100 In SD Only

LETTERS

LETTERS

RADIO-ELECTRONICS
5OO-A B/-COUNTY BOULEVARD
FARMINGDALE,NV 11735

OLD CAR RADIOS

After reading your article, "New Life for Old Car Radios," in the April 1987 issue of Radio-Electronics, I was inspired to make use of an old AM/FM cassette deck that had been sitting in my closet idly for over a year.
I integrated the unit into the shelf of a computer desk, using an old pair of bookshelf speakers, a 12 -volt power supply from my junkbox, mounting brackets that had come with the radio, and a 16inch rubber car antenna that I purchased for less than $\$ 6.00$.

The cassette deck was mounted on the underside of the top shelf
of the desk. The antenna was mounted through a hole that was drilled in a rear corner of that shelf. The speakers were placed on top of the shelf. The setup provides me with an excellent sound system that takes up little space at my computer workstation.
MICHAEL K. MIZOTE Gardena, CA

THE R-E ROBOT

I have enjoyed the "Build the R-E Robot" series that is currently appearing in Radio-Electronics. In fact, I have just re-subscribed, after an absence of some years, because of it. I've been a roboticist
since I was a boy, long before it was fashionable, and I'm currently involved with developing a mobile robot for artificial intelligence research. I also teach robotics for the State University of New York, on a part-time basis. Now for a few comments about Mr. Sarns' design, as presented to date.

Automated equipment is more dangerous than non-automated equipment, because it can startunder computer control-without warning. Program bugs or electro/ mechanical failures can result in runaway machines, which (as Mr. Sarns correctly points out) can cause a lot of damage. I would rec-

ommend the addition of the following safety features to the design

- A clearly marked and easily accessible cutoff switch that would be in series with the motor(s)' power bus. That will allow quick disabling of a runaway machine without interrupting power to the computer/memory.
- A motor-bypass switch on each motorized subassembly that would redirect motor power to a set of forward/reverse/on/off indicators. That is invaluable for troubleshooting and program debugging
- Lead acid batteries pose three risks-hydrogen gas production during charge/discharge cycles; very high voltage-discharge rates in the event of a short circuit; and finally, the acid itself. You should ventilate the battery compartment, fuse the main power bus at the battery post, and line the battery compartment with an acid-resistant material. Plastic boxes are available at low cost. It may be desirable to add baking soda to the packing material in the battery compartment to neutralize spilled acid. (I can assure you, from personal experience, that all mobile robots turn over sooner or later.)

Also, any machine that uses a chain or belt drive, as does the R-E Robot is a potential hazard. A $1 / 4-$ horsepower motor geared down to $12: 1$ can sever young fingers caught between the belts/chain and pulleys/sprockets. Please put guards over the drive trains. They are easy to fashion and will add mere ounces to the machine.

Thank you for Radio-Electronics' continued interest in robotics. I hope that my comments here will not be taken as overly critical; Mr. Sarns' overall design has been excellent, and I am looking forward to reading the rest of the series. JOSEPH A. COPPOLA
Sherrill, NY
Mr. Coppola is absolutely correct. The R-E Robot was designed as a heavy-duty workhorse quite unlike most hobby robots. The standing joke here at Vesta is to equip a unit with over-sized, knobby tires and take pictures of it crushing Hero 2000's. Seriously though, the safety issues cannot

Analyze defective waveforms faster, more accurately, and more confidently - every time or your money back

If you value your precious time, you will really want to check out what the exclusively patented SC61 Waveform Analyzer can do for you. 10 times faster, 10 times more accurate, with zero chance of error.
End frustrating fiddling with confusing controls. Exclusive ultra solid ECL balanced noise cancelling sync amplifiers, simplified controls, and bright blue dual trace CR'T help you measure signals to 100 MHz easier than ever.
Accurately and confidently measure waveforms from a tiny 5 mV all the way to a whopping $3,000 \mathrm{~V}$ without hesitation with patented 3,000 VPP input protection - eliminates expensive "front end" repairs and costly equipment downtime.
Make only one circuit connection and push one button for each circuit parameter test: You can instantly read out DC volts, peak-to-peak volts and frequency 100% automatically with digital speed and accuracy. It's a real troubleshooting confidence builder.
Confidently analyze complex waveforms fast and easily. Exclusive Delta measurements let you intensify any waveform portion. Analyze glitches, interference signals, rise or fall times or voltage equivalents between levels; direct in frequency or microseconds.
Speed your digital logic circuit testing. Analyzing troublesome divide and multiply stages is quicker and error free - no time-consuming graticule counting or calculations. Simply connect one test lead to any test point, push a button, for test of your choice, for ERROR FREE results.
To see what the SC61 can do for your troubleshooting personal productivity and analyzing confidence, CALL TODAY, WATS FREE, 1-800-843-3338, for a FREE 15 day Self Demo.

Call Today Wats Free 1-800-843-3338

3200 Sencore Drive
Sioux Falls, SD 57107
605-339-0100 In SD Only
innovatively designed with your time in mind.
be overstated. Mr. Coppola's suggestions are well taken. We have added a main power switch to each of our units that shuts everything off. One solution to the risks posed by using lead acid batteries is to substitute sealed gel type batteries. However, they cost about 5 to 10 times more than the conventional variety. I agree, all mobile robots do turn over. Sometimes it's simply a result of not tightening the axle retaining bolts sufficiently (one learns the ramifications fast!)

The external drive system is dan-gerous-old fingers may be equally in jeopardy. I know of one company (Micro K Systems) that is considering offering a set of vacuum formed chain guards.

Perhaps I have not stressed the safety issues as much as I should have. I have assumed that if you, as a robot hobbyist, are intelligent enough to assemble, program, and test the robot, most of the safety issues will be self-evident.

Many of the issues raised relate to the difference between a project and a product. A product with the price/performance advantages that the R-E Robot offers would be impossible. But as a project, one is not forced to protect the "innocent" with expensive safety features that are not needed in your specific application, and the basic cost is kept down.

It is also worth pointing out that the series, from the beginning, has encouraged robot experimenters to use our robot only as a guide or an example. We are most happy when we hear of builders modifying our basic design.-Steven E. Sarns

THE "FOX-HOLE" RADIO

As a follow-up to the razor-blade detector discussions in "Letters" in December 1986 and April 1987, I thought that you and the readers might be interested in the following item about Lt. M. L. Rupert of Springfield, MO, who made a most ingenious radio during World War II. The information, including part of a letter from Lt. Rupert., is on a plaque that has been hanging on a wall at the Armed Forces Radio and Television Service as long as anyone can remember. The letter reads:
"... Your Marlin double-edged blade is used to make a foxhole radio for the Yank infantrymen on this beachhead. All that's needed is a coil of wire, insulated, a safety pin, a headset, and a used blade. The blade is tacked down, with a wire attached to it and going to one side of the coil and on to the aerial. The other side of the coil goes to the ground and to one side of the headset. A wire from the other side of the headset goes to a
safety pin driven into the wood, leaving the other end of the pin free to be moved across the unground part of the Marlin blade to find your station. Reception is very good and at night we get several stations including the Berlin Sally propaganda put out in English."

Have any of your readers seen any earlier references to the "razor detector?"
THOMAS P. SMITH IC1-USN Sun Valley, CA

R-E

EqUIPMENT

 REPORTS

 REPORTS}

AVCOM PSA-35A Portable Spectrum Analyzer
 An indespensible tool for TVRO installation and servicing.

If you think of sprctrum analyzers as instruments that cost tens of thousands of dollars and are at home on-and are hardly ever moved from-a laboratory test bench, you better think again! The TVRO industry has fueled many advances in microwave components. The same technology and components that have helped the cost of satellite receiving equipment to drop so dramatically during this decade has benefited test equipment for microwave frequencies as well. We recently had the opportunity to inspect one of the benefactors: the PSA-35A portable spectrum analyzer from Avcom of Virginia, Inc., (500 South Lake Blvd., Richmond, VA 23235).

A spectrum analyzer is a scanning radio receiver that displays the signals present in a given part

of the RF spectrum. It can be an extremely valuable tool for a TVRO installer. Using it, a lechnician can greatly speed up the dish-aiming process and polarizer adjustment. He can measure the performance of LNA's and downconverters, troubleshoot cabling and connector problems, and even spot Terrestrial Interference (TI) problems. Before we look at how the analyzer can be put to work in practical applications, let's take a look at its general specifications and features.
The PSA-35A offers 5 low bands of coverage from less than 10 MHz to greater than 1500 MHz , and a single high band from 3.7 to 4.2 GHz . The low bands are configured as follows:
a) less than 10 MHz to 500 MHz
b) 270 MHz to 770 MHz
c) 400 to 900 MHz
d) 950 to 1450 MHz

The fifth low-frequency band can be preset by the user to cover any $500-\mathrm{MHz}$ band between 300 MHz and 1500 MHz (or up to 1900 MHz on special order).

The PSA-35A offers two input connectors: The low band connector is a BNC type, and the highband connector is an N type. Because it is a TVRO service tool, the continued on page 20

ПBP83-VMOS PROJECTS . . . \$5.50. Primarily concerned with VMOS power FET's. Projects include audio circuits, sound generator circuits, DC control circuits. and signal control circuits.

4 BP82-PROJECTS USING SOLAR CELLS $\$ 5.00$. Simple circuits have applications around the home. All are powered by the energy of the sun. Have fun and stop buying batteries.

- BP99-MINI-MATRIX BOARD PROJECTS $\$ 5.00$. Includes 20 useful projects that can all be assembled on a small circuit board, Vero board, or solderless breadboard. Try them, you'll like them
 CUIT BOARD PROJECTS . $\$ 5.00$. Make only one printed-circuit board and you can build all of the 21 different projects in this book. Whenever possible, the same components are used too.
 \square BP94-PROJECTS FOR CARS AND BOATS \$5.00. Fifteen fairly simple devices for use with your car and/or boat Com. your car andor boat. Complete description of how each one works and a circuit board pattern

4 BP95-MODEL RAILWAY PROJECTS $\$ 5.00$. Useful but reasonably simple projects for the model railroader. Controilers, signal and sound effects, and more.

MAIL TO: Electronic Technology Today

 P.O. Box 240Massapequa Park, NY 11762-0240

- SHIPPING CHARGES IN USA \& CANADA $\$ 0.01$ to $\$ 5.00 \ldots \$ 1.00 \quad \$ 30.01$ to $40.00 \ldots \$ 4.75$ $\$ 5.01$ to $\$ 10.00 \ldots \$ 1.75 \$ 40.01$ to $50.00 \ldots \$ 5.75$ $\$ 10.01$ to $20.00 \ldots \$ 2.75 \$ 50.01$ and above $\$ 7.00$ $\$ 20.01$ to $30.00 \ldots \$ 3.75$
Multiply Shipping by 2 for sea mail
Multiply Shipping by 4 for air mail
Total price of merchandise
Shipping (see chart)
Subtotal
Sales Tax (NYS only)
Total Enclosed

"If you're going to learn electronics, you might as well learn it right!"

You've probably seen advertisements from other electronic schools. Maybe you think they're all the same. They're not! CIE is the largest independent home study school in the world that specializes exclusively in electronics.

Meet the Electronics Specialists.

When you pick an electronics school, you're getting ready to invest some time and money. And your whole future depends on the education you get in return.

That's why it makes so much sense to go with number one . . . with the specialists . . . with CIE!

Pick the pace that's right for you.

CIE understands people need to learn at their own pace. There's no pressure to keep up . . . no slow learners hold you back. If you're a beginner, you start with the basics. If you already know some electronics, you move ahead to your own level.

Enjoy the promptness of CIE's "same day" grading cycle.

When we receive your lesson before noon Monday through Saturday, we grade it and mail it back the same day. You find out quickly how well you're doing!

CIE offers you an Associate Degree.

One of the best credentials you can have in electronics - or any other career field - is a college degree. That's why CIE gives you the opportunity to earn an Associate in Applied Science in Electronics Engineering Technology. Any CIE career course can offer you credit toward the degree more than half of the number needed in some cases.
"Cleveland Institute of Electronics is the only accredited institution of higher learning offering an Associate Degree program with tuition based on actual study time used. The faster you complete your degree assignments, the less your overall tuition." Steve Simcic Vice-President Academic Affairs

There's no such thing as bargain education.

If you talk with some of our graduates, chances are you'd find a lot of them shopped around for their training. Not for the lowest priced but for the best. They pretty much knew what was available when they picked CIE as number one.

We don't promise you the moon. We do promise you a proven way to build valuable career skills. The CIE faculty and staff are dedicated to that When you graduate, your diploma shows employers you know what you're about. Today, it's pretty hard to put a price on that.

Because we're specialists we have to stay ahead.

At CIE, we've got a position of leadership to maintain. Here are some of the ways we hang onto it .

Programmed Learning

That's exactly what happens with CIE's Auto-Programmed Lessons. Each lesson uses famous "programmed learning" methods to teach you important principles. You explore them, master them completely, before you start to apply them. You thoroughly understand each step before you go on to the next. You learn at your own pace.

And, beyond theory, some courses come fully equipped with electronics gear (the things you see in technical magazines) to actually let you perform hundreds of "hands-on" experiments.

Experienced specialists work closely with you.

Even though you study at home, you are not alone! Each time you return a completed lesson, you can be sure it will be reviewed, graded, and returned with appropriate instructional help. When you need additional individual help, you get it fast and in writing from the faculty technical specialist best qualified to answer your question in terms you can understand.

State-of-the-art Laboratory Equipment

Some courses feature the CIE Microprocessor Training Laboratory. An integral part of computers, microprocessor technology is used in many phases of business, including service and manufacturing industries.

The MTL gives you the opportunity 10 program it and interface it with LED displays, memory devices, and switches. You'll gain all the practical experience needed to work with state-of-the-art equipment of today and tomorrow.

Which CIE Training fits you?

Beginner? Intermediate? Advanced? CIE home study courses are designed for ambitious people at all entry levels. People who may have:

1. No previous electronics knowledge, but do have an interest in it;
2. Some basic knowledge or experience in electronics;
3. In-depth working experience or prior training in electronics.
You can start where you fit and fii where you start, then go on from there to your Diploma, Associate Degree, and career.

Today is the day. Send now.

Fill in and return the postage-free card attached. If some ambitious person has removed it, cut out and mail the coupon. You'll get a FREE school catalog plus complete information on independent home study. For your convenience, we'll try to have a CIE representative contact you to answer any questions you may have.

Mail in the coupon below or, if you prefer, call toll-free 1-800-321-2155 (in Ohio, 1-800-523-9109).

Cleveland Institute of Electronics, Inc.
1776 East 17 th Street. Cleveland, Ohio 44114
Accredited Member National Home Study Council
YES...I want to learn from the specialists in electronies - CIE. Send me my FREE CIE school catalog...including details about the Associate Degree program... plus my FREE package of home study information.

- Print Name

Address

> Apt.

City \qquad State \qquad
Age Area Code/Phone No.

Check bos for G.I. Bill bulletin on Educational Benetits: \square Veteran \square Active Duiy
MAIL TODAY!
CIRCLE 60 ON FREE INFORMATION CARD

2 year warranty

A new Storage Oscilloscope with 5 MHz sampling rate.

This instrument offers all the outstanding features of a state-of-the art 20 MHz realtime oscilloscope. In addition, it provides digital storage capability for signals between 50 s and $\mathbf{5 \mu s}$ duration. Maximum memory is 1024×8 bits for each channel. A Dot Join feature permits linear interpolation between sample points. An X Y recorder option and an optional GPIB interface allow full integration in automatic test systems In many cases, the HM205-2 can easily replace considerably more expensive digital storage oscilloscopes

Price incl. 2 Probes 888,- \$
Demonstration of the excellent transmission performance of the HM 205-2 in analog mode with a fast risetime 1 MHz square wave signal. All HAMEG Oscilloscopes are specified to have less than 1% aberrations and overshoot.

This screen photo shows a 20 kHz sine wave signal in storage mode. The screen resolution of $1024 \times$ 256 points offers an outstanding dispiay that can easily be compared to those found on analog instruments.

Write or call toll free 8002471241

New PRODUCTS

CIRCLE 30 ON FREE INIFORMATION CARD

HI-FI VHS VCR, the model $V R 6600 F$, is a front-loading recorder and it offers two video heads with HQ circuitry for virtually noise-free pictures; hi-fi stereo audio recording/playback; built-in MTS decoder for stereo-TV broadcasts; and 110-channel, cablecompatible, frequency-synthesized tuning. The recorder also features a 14 -day/6-event program-
mable timer, three-speed record and playback functions, auto rewind, picture search, pause/still, and one-touch recording.

The model VR6600F measures $37 / 8$ inches high, by $1615 / 16$ inches wide, by $139 / 16$ inches deep. The suggested retail price is \$649.95.Samsung Electronics, America, 301 Mayhill Street, Saddle Brook, NJ 07662.

SURGE PROTECTOR, the model $D E-L S P$, is designed to protect valuable video equipment against induced transients from lightning. The simple-to-install in-line device is designed with extremely low capacitance circuitry for minimal insertion loss; there are external ground connections for extra protection against high-potential surges from chassis ground to earth ground.

CIRCLE 31 ON FREE INFORMATION CARD

The model $D E-L S P$ is priced at \$92.00.-Diamond Electronics, Inc., P.O. Box 200, Lancaster, OH 43130.

SCANNER, the model R1090, is 45channel and includes bank scanning, weather scan, and a priority control. It is designed for beginners as well as veteran scanning enthusiasts, and covers more than 15,000 frequencies from six of the most popular VHF and UHF bands. Coverage includes VHF low (30-50 MHz), VHF amateur ($144-148 \mathrm{MHz}$), VHF high (148-174 MHz), UHF amateur ($440-450 \mathrm{MHz}$), UHF ($450-470$ MHz), and UHF-T ($470-512 \mathrm{MHz}$). 45 popular frequencies are preprogrammed at the factory, so that the unit can be operated right out of the box.

The 70 Series Multimeter: The Shining Standard By Which Others Are Measured These multimeters give you solid value for your money. A 3-year warranty keeps you from paying the price over and over for lesser quality meters.

Choose from either the basic 73 or the feature-rich 75 and 77 . You'll find the features you need at the price you can afford. Touch Holdrm for holding readings. Audible tones for continuity checks. Autoranging for simple operation.

Uncompromised quality at competitive prices. Get your hands on a 70 Series Multimeter at leading electronics distributors nationwide. Or call toll free 1-800-227-3800, ext. 229 for more information.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

FLUKE 73, 75, 77

$\$ 79, \$ 109, \$ 145$	3-year warranty
$0.7 \%, 05 \%$, and 0.3% basic dc accuracy	Audibie continuity $175 \& 77)$
Analog/digital display	Range hold (75 \& 77)
Vols ohms, 10A diode test	Multipurpose holster (77)
Autorange	Touch Hold function (77)
$2000+$ hour battery life	

TAKE ANY ONE OF THESE HANDBOOKS - when you join the ELECTRONICS AND

- your one source for engineering books from over 100 different publishers

- the latest and best information in your field
- discounts of up to 40% off publishers' list prices

322/910

Publisher's Price $\$ 110.00$
ANTENNA ENGINEERING HANDBOOK, Second Edition
Edited by R. C. Johnson and H. Jasik

- 1,408 pages, 946 illustrations
- covers all types of antemnas currently in use with a separate chapter devoted to each
- provides detailed data on physical fundamentals, operating principles, design techniques, and performance data
- up-to-the-minute information on antenna applications
- a must for those involved in any phase of antenna engineering

Publisher's Price $\$ 64.50$

STANDARD HANDBOOK OF ENGINEERING CALCULATIONS, Second Edition
By T. G. Hicks

- 1,468 pages, 793 illustrations, 499 tables
- puts more than 1,100 specific calculation procedures at your fingertips
- every calculation procedure gives the exact, numbered steps to follow for a quick, accurate solution
- virtually all procedures can be easily programmed on your PC or calculator
- uses USCS and SI units in all calculation procedures

Publisher's Price $\$ 89.50$

TELEVISION ENGINEERING

 HANDBOOKEdited by K. B. Benson

- 1,478 pages, I,091 illustrations
- packed with all the technical information today's engineer needs to design, operate, and maintain every type of television equipment
- extensive coverage of receivers, broadcast equipment, video tape recording, video disc recording, and the latest technological advances
- provides television systenı and industry standards for the U. \dot{S} and other countries
- the most comprehensive book on the subject of television engineering

FOR ONLY \$14.95-VALUES UP TO \$110.00 CONTROL ENGINEERS' BOOK CLUB ${ }^{\circ}$

Publisher's Price $\$ 89.00$

ELECTRONICS ENGINEERS'

 HANDBOOK, Second EditionBy D. G. Fink and D. Christiansen

- 2,272 pages, 2,189 illustrations
- unrivaled for its completeness, authority, reliability and timeliness
- 80% new or extensively revised
- prepared by a staff of 173 expert contributors
- brings you more than 2,000 formulas and equations
- has over 2,500 bibliographic entries

Publisher's Price \$82.50

MODERN ELECIRONIC CIRCUITS REFERENCE MANUAL
By J. T. Markus

- 1,264 pages, 3,666 circuit diagrams
- a handy, desktop reference with 103 chapters organized by "family" grouping
- filled with predesigned and use-tested circuits to save you production time and money
- includes concise summaries of alt the recent applications notes, journal articles, and reports on each circuit, efficiently organized and indexed for the practicing engineer

4 reasons to join today!

1. Best and newest books from all publishers! Books are selected from a wide range of publishers by expert editors and consultants to give you continuing access to the best and latest books in vour field.
2. Big savings! Build your library and sare mone!, too! Savings range up to 40% off publishers' list prices.
3. Bonus books! You will immediately begin to participate in our Bonus Book Man that allows you savings up to 70% off the publishers prices of many professional and general interest books!
4. Convenience! 14-16 times a year (about once every 3-4 weeks) you receive the Club Bulletin FREE It fully describes the Main Selection and alternate selections. A dated Reply Card is included. If you want the Main Selection, you simply do nothing - it will be shipped automatically. If you want an alternate selection - or no hook at all you simply indicate it on the Reply Card and return it by the date specified. You will have at least 10 days to decide. If, because of late delivery of the Bulletin you receive a Main Selection you do not want, you may return it for credit at the Clubs expense.
As a Club member you agree only to the purchase of threc aldditional books during your first year of membership. Membership may be discontinued by either you or the Club at any time after you have purchased the three additional books.

FOR FASTER SERVICE IV ENROLLING CALL TOLL FREE 1-800-2-MCGRAW

McGraw-Hill Book Clubs	I wish to order the following book:
Electronics and Control Engineers ${ }^{\text {c }}$ Book Club ${ }^{(1)}$	\square AVTEYSA ENGINEERING HALDBOOK (322/910)
11 West 19th Street 4th tloor	\square MODERN IELICTRONIC CIRCIITS RIFERIXCE MAVUAL ($40-4 / 461$)
New York, NY 10011	\square ELECTRONICS ENGINEERS' HA\DBOOK (209/812)
	\square TlLEvision evgineierivg handrook (047/790)
Please enrotl me as a member of the Electronics and	\square STALDARD HANDBOOK OF EVGINEERING CALCULTIIONS (287/35N)
Control Engineers' Book Club ${ }^{\text {B }}$ and send me the book I have chosen for only $\$ 14.95$, plus local tax, postage, and	Signature
handling. I agree to purchase a minimum of three additional books during my first year as outlined under	Same
the Club plan described in this ad. Menbership in the	Address/Apt. \#
the three book purchase requirement has been fulfilled. A shipping and handling charge is added to all shipments.	Citystate Zip \qquad \qquad this order subiect to acceptance by Mctiraw-lill Offer qiwd only to new mémbers. Foreign member acceplance suhbiect to special conditiows. This offer expirrs July 1. 1987.

CIRCLE 32 ON FREE INFORMATION CARD
For added convenience, frequencies can be grouped into any of four channels for "bank scanning". (For example, "Bank One" could include all common police frequencies; "Bank Two" can include fire channels, etc.) All four banks can be scanned at once, or individual banks can be scanned to speed up the scanning cycle. When the "weather scan" key is pressed, the scanner automatically searches all National

Get A Complete Course In

ELECTRONIC ENGINEERING

8 volumes, over 2000 pages, including all necessary math and physics. 29 examinations to help you gauge your personal progress. A truly great learning experience.

Prepare now to take advantage of the growing demand for people able to work at the engineering level.

Ask for our brochure giving complete details of content. Use your free information card number, or write us directly. \$99.95, Postage Included. Satisfaction guaranteed or money refunded.
 Rockford, IL 61103
CIRCLE 183 ON FREE INFORMATION CARD

Weather Service frequencies to find the active frequency in a few seconds.

The model $R 1090$ has a suggested retail price of $\$ 239.95$.-Regency Electronics, 7707 Records Street, Indianapolis, IN 46226.

ANTENNA/AMPLIFIER, the model $R F-36$, is designed for FM-stereo, VHF- and UHF-TV, or police-scanner applications. Features include $50-$ to $950-\mathrm{MHz}$ bandwidth, $12-\mathrm{dB}$ signal gain, 75 -ohm output, and 117-volt AC operation.

CIRCLE 33 ON FREE INFORMATION CARD

The unit's small size and construction allow it to be remotely mounted, hidden, or placed on a shelf. The model $R F-36$ is priced at \$79.95.-Rhoades National Corp., P.O. Box 1316 Dept. ZN9, Columbia, TN 38402.

CABLE CHECKER, the model $D X-50$, is pocket-sized, and instantly evaluates the integrity of any 2,3 , or 6 -wire RJ- 11 modular telephone or data cables. To use, simply plug in both cable ends and examine the three two-color LED's on the front panel to determine the integrity of the cable pairs. Si-

CIRCLE 34 ON FREE INFORMATION CARD
multaneously, the color of the LED's determine whether the cable is properly wired for data use with straight-through pinning (lights red), or for voice communication with crossed pinning (lights green). The high-impact case is $2.4^{\prime \prime} \times 3.8^{\prime \prime} \times 1^{\prime \prime}$ and operates from one alkaline 9 -volt battery (supplied). The model $D X-50$ is priced at \$26.95.-L-Com Data Products, 1755 Osgood Street, North Andover, MA.

DIGITAL THERMOMETER, the model DT-160, is pocket-sized and, in addition to its extendable temperature probe, has a temperature sensor mounted on its front panel. That allows the user to switch between reading room temperatures and probe temperatures in seconds. There is also a built-in clock that displays time when selected, and the unit is programmable at two individual temperature limits that trigger an audible alarm. The model DT-160 has a built-in tilt stand and spring clip that allows it to be placed in almost any location. Its range is $0^{\circ} \mathrm{s}-159.8 \mathrm{~F}\left(-19.9^{\circ}\right.$ to $71^{\circ} \mathrm{C}$).

CIRCLE 35 ON FREE INFORMATION CARD

The model DT-160 comes with battery, $34^{\prime \prime}$ attached probe lead, and one-year warranty; it is priced at $\$ 45.00$ - A. W. Sperry Instruments, Inc., 245 Marcus Boulevard, Hauppauge, NY 11788.

CASSETTE TERMINAL, the model 5450XL, is microprocessor-based, with extended baud-rate capability. The new model now oper-

CIRCLE 36 ON FREE INFORMATION CARD
ates at 4800,9600 , and 19,200 baud, in addition to its existing rates of $110-2400$ baud. Existing units can be upgraded through the purchase of an upgrade kit. It is fully compatible with ANSI/ECMA, RS-232C-BUS, and CCITT V.24BUS standards, and cassette interchangeability is guaranteed. Each terminal incorporates cassette tape drive, microprocessor controller, and dual interface ports; it is particularly designed for datacollection and data communications applications.

The model 5450XL is priced at \$2495.00.-Memtec, Keewaydin Drive, Salem, NH 03079 R-E continued on page 81

Cash in on the Video-Cassette Boom! START YOUR OWN TV/VCR REPAIR BUSINESS at Home in Spare Time

N°ow it's easy for you to get into this moneymaking business. Be the person in demand by the millions of families who own videocassette record-ers-the fastest-growing product in the home entertainment field. Train at home in your spare time for an exciting career as a TV/VCR Repair Specialist. Experts show you how to start small at home with low overhead. Later you can go after repair business from hotels, offices, hospitals and other companies who use TVs and VCRs in their daily operations

Experts show you what to do, how to do it...guide you every step of the way!
Learn how to handle house calls and shop repairs everything you need to know to get started fast. Tools are included with your course so you get "hands-on" practice as you follow your lessons step by step. Everything is explained in easy-to-understand language, but if there is ever anything in your lessons you don't understand, you can write or phone your instructor and you can count on getting an authoritative answer. Get free facts and color brochure that tell about home business opportunities. No cost. No home business opportunities. No co
obligation. No salesman will visit. obligation. No salesman will visit
MAIL COUPON TODAY!

HES School of ty vcr Repalr. dept. De 067

 tast, Scranton, Pennsylvania 18515| Please send me free facts on how I can learn TV/VCR Repair at home in my spare time. $1 \mathrm{TV} /$
${ }_{1}$ Na
City/State/Zip
Phone (

10 CHANNEL SCANNER

Hear the Action As It's Happening! Pick up all the listening excitement including fire, police, weather, and more... with this pocket-size, hand-held Bearcat ${ }^{(8)}$ Scanner. Rebuilt-like-new by trained technicians, this Model 50XL carries a 90-Day Limited Vendor Warranty on Parts and Labor. Order now at a LOW liquidation price!

- Scans 10 Channels Over 10 Bands.
- Covers Frequencies 29-54; 136-174; $406-512 \mathrm{MHz}$. Scans 15 Channels Per Second. Built-In 3 Second Delay, Cuts Missed Transmissions.
- Keyboard Lock Prevents Accidental Information Entry.
- Frequency LCD, Squelch, Volume, Lockout and Review Controls.
- $61 / 2$ " Flex Antenna. Belt Clip. Uses 5 "AA" Batteries (Not Included).

Compare At
. $\$ 229.99$
Liquidation
Priced At \$139
Item H-2504-7146-384 S/H: \$4.00 ea.

Credit card members can order by
phone, 24 hours a day, 7 days a week
Toll-Free: 1-800-328-0609
Sales outside the 48 contiguous states are subject to special conditions. Please call or write to inquire.

SEND TO:
Item H-2504
C.O.M.B. Direct Marketing Corp.

1405 Xenium Lane N/Minneapolis, MN 55441-4494 Send Bearcat Hand-Held Scanner(s) tem H-2504-7146-384 at $\$ 139$ each, plus $\$ 4$ each for ship, handiing (Minnesota residents add 6% sales tax. Sorry, no C.O.D. orders)
\square My check or money order is enclosed. (No delays in processing orders paid by check.)

PLEASE

CHECK

Acct. No Exp PLEASE PRINT CLEARLY
Name
Address
City
State \qquad $21 P$
Phone
Sign Here

THE MOST POPULAR WIRE-WOUND CB ANTENNAS IN THE WORLD
Because...they perform!

FACT
"When CB was legalized in England, 'Firestik' antennas were barred from sale because the emitted signal was too strong. Fortunately, no other country, including the U.S.. limits antenna efficiency.

YOU CAN HAVE SECOND BEST OR, 'Firestik'!

Call or Write for FREE Catalog
'Firestik' Antenna Company 2614 East Adams
Phoenix, Arizona 85034
(602) 273-7151

MILIUNS OF SATISFIED OWHERS

CIRCLE 100 ON FREE INFORMATION CARD

THROUGH HOME STUDY
Our New and Highly Effective Advanced-Placement Program for experienced Electronic Technicians grants credit for previous Schooling and Professional Experience, and can greatly re duce the time required to complete Program and reach graduation. No residence schooling re quired for qualified Electronic Technicians Through this Special Program you can pull all of the loose ends of your electronics background together and earn your B.S.E.E. Degree. Up grade your status and pay to the Engineering Level. Advance Rapidly! Many finish in 12 months or less. Students and graduates in all 50 States and throughout the World. Established Over 40 Years! Write for free Descriptive Lit erature

OF ELECTRONICS ENGINEERING
(\%) $\frac{7}{3}$ P.O. BOX 20345
P.O. BOX 20345

JACKSON, MISSISSIPPI 39209

DRAWING

BOARD

ROBERT GROSSBLATT

Dynamic memory

UP UNTIL ABOUT EIGHT OR NINE YEARS ago, systems designers would avoid dynamic memory like the plague. The reason for that was simple: the disadvantages far outweighed the advantages. You could plop static RAM in a circuit and use it without much other thought, but dynamic RAM required a lot of support circuitry. In fact, back in those days a 16 K dynamic RAM was a big deal: it needed three supply voltages and was very particular about timing.

Things have changed.

Today's cheap 64 K dynamic RAM's are much easier to use and since they give so many bits for the buck, any designer worth his salt has to be familiar with them. Lots
of special dynamic RAM controllers are available that take care of all of a dynamic RAM's special needs, and make them almost as easy to use as static RAM. To help you get a good grasp on how to use dynamic RAM, we'll put together a simple system; and although the system won't be state-of-the-art, once you understand how it works you'll have a good grasp of the basic considerations of designing with dynamic RAM.

Keeping in mind the DRAM (Dynamic Random Access Memory) characteristics we discussed last month, you can see that any syslem using them has to have certain building blocks. The block diagram in Fig. 1 describes not only the system we're putting together,

FIG. 1
but also one that uses the most sophisticated LSI DRAM controller. The difference between the Iwo is where the elements are found. A lot of the discreet parts we'll be using are packed together in the substrate of LSI devices such as Intel's 8208 family. Once you're familiar with our system, putting together an LSI system will be a relatively easy task.

The system has three main sections, and although each one does a separate job, they have to interact as well.

1. The memory array: That section contains only the actual storage devices. In our circuit it's made up of eight 4164's, each of which is organized as $64 \mathrm{~K} \times 1$ bit.
2. The refresh circuit: That produces the control signals, sequential addresses, and the timing logic to maintain the data in the memory array.
3. The I/O circuitry: That circuitry generates the necessary timing and control signals to let an external device get access to the memory array.

Let's look at each of the sections individually.

First section

You should be familiar with the memory array because we've already spent lots of time talking about dynamic RAM in general and 4164's in particular. Each of the eight IC's has its address and control lines bused together. The data in and data out pins on each IC are also tied together, because the direction of data flow will be controlled by the rest of the system, and the 4164 can be told to threestate its output.

Second section

The refresh circuitry is designed to count systematically through all the addresses needed to maintain the stored data. That is, of course, the big drawback of using dynamic RAM. IC designers have made refresh as easy as possible and, if you read a 4164 data sheet, you'll see that there are several ways in which it can be done. We'll be doing a RAS-only refresh, which means that we present a row address to the A0 to A6 address pins of the memory array and then bring the ras line low. That will

NOISE REDUCTION FOR UNDER SIO.

Even the finest equipment in the world cannot guarantee noise-free operation. One "dirty" connection anywhere in the electrical path can cause unwanted noise or signal loss.

"MORE THAN A CONTACT CLEANER"

CRAMOLIN ${ }^{\text {® }}$ is a fast-acting, anti-oxidizing lubricant that cleans and preserves all metal surfaces, including gold.
When applied to metal contacts and connectors, CRAMOLIN ${ }^{\text {® }}$ removes resistive oxides as it forms a protective molecular layer that adheres to the metal surfaces and maintains maximum electrical conductivity.

CRAMOLIN* - USEO BY THOSE WHO DEMAND THE BEST:

Cramolin ${ }^{\text {a }}$ - USEO by Those Who demano the sest:			
Bell \& Howell	Hewlett Packard	MCIISony)	Nakamichi
Bosing	John Fluke Mig.	Motorola	hCA
Capitol Records	Mcintosh Labs	NASA	Switchcraft
CAIG TATEOES			

Try the

bulletin board system
(RE-BBS)
516-293-2283

The more you use il the more usetul it becomes.
We support 300 and 1200 baud operation.

Parameters: 8N1 (8 data bits, no parity, 1 stop bit) or 7E1 (7 data bits, even parity, 1 stop hit).

Add yourself to our user files to increase your access.

Communicate with other R-E readers.
Leave your comments on R-E with the SYSOP.

RE-BBS
516-293-2283

- Access the stock market, take college classes, do your shopping and more.
- For Commodore 64K or SX64.
- Has modular jacks for quick, easy hookup to your phone system!
- Works on TouchTone ${ }^{\text {Tu }}$ and Rotary (pulse) dialing (not PBX).
Overstock liquidation. Simple communications package connects 64 K or SX64 for on-line telephone use. No special computer knowledge required. This super-intelligent software is completely menu-driven and easy to understand.
Features: 30 K software buffer. 300 Baud. Auto-dial simplifies complex modem steps. Upload, downioad of text, programs, data files. Captures and displays hi-resolution, mapped graphics files. Color selection menu. Equipment needed: C64, monitor, and disk drive or SX64.
NOTE: Price includes trial subscription to over 52 data base services for vast information. Intial sign-up fee is FREE. All you pay is the on-line time you use, plus monthly rate.
90-Day Limited Factory Warranty.
 d: $\$ 4.00$ ea.

Toll-Free: 1-800-328-0609
Sales outside the 48 contiguous states are subject
special conditions. Please call or write to inquire. special conditions. Please call or write to inquire.
$\overline{\mathrm{C}} . \overline{\mathrm{M}} \overline{\mathrm{B}}$ Direct Marketing Corp. $-\cdots-$ Item $_{\mathrm{H}-2544}^{-}$ 1405 Xenium Lane $\mathrm{N} /$ Minneapolis. MN 55441-4494 1405 Xenium Lane N/Minneapolis. MN
Send__Modem(s) tem H-2544-3646-007 at \$19 each Send_Modem(s) Item H-2544-3646-007 at $\$ 19$ each.
plus $\$ 4$ each for ship. handling. (Minnesota residents add 6\% sales tax. Sorry, no C.O.D. orders.)
\square My check or money order is enclosed. (No delays in
processing orders paid by check.)
PLEASE
CHECK

Acct. No.
PLEASE PRINT CLEARLY
Name
Address
City
City
State
Ph
Phone
Sign Here

FREE CATALOG OF HARD-TO-FINL TOOLS is packed with more than 2000 quality items. Your single source for precision tools used by electronic technicians, engineers, instrument mechanics, schools, laboratories and government agencies. Also contains Jensen's line of more than 40 tool kits. Send for your free copy today! JENSEN TOOLS INC., 7815 46th St., Phoenix, AZ 85044. (602) 968-6231

CIRCLE 115 ON FREE INFORMATION CARD

THE MODEL WTT-20 IS ONLY THE SIZE OF A DIME, yet transmits both sides of a telephone conversation to any FM radio with crystal clarity. Telephone line powered - never needs a battery! Up to $1 / 4$ mile range. Adjustable from 70-130 MHZ. Complete kit $\$ 29.95$ $+\$ 1.50 \mathrm{~S}+\mathrm{H}$. Free Shipping on 2 or more! COD add \$4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.
CIRCLE 127 ON FREE INFORMATION CARD

BUILD STEVE CIARCIA'S NEW VIDEO DIGITIZER. - True "Frame Grabber", pic takes $1 / 60$ th sec - Not bus Dependent Standalone digitizer - Serial output, transmits 300 bps to 57.6 Kbps - Resolution: $256 \times 244 \times 6$ w/64 level grayscale - Accepts any NTSC video input, B\&W or Color - Optional Rec/Display makes Video Telephone - Images can be stored \& displayed on IBM PC. Full Digitizer/Serial Transmitter Kit - $\$ 249$. Call for other options and specs. CCI, 4 Park St., Suite 12, Vernon, CT 06066. (203) 875-2751.

CIRCLE 206 ON FREE INFORMATION CARD

CALL NOW AND RESERVE YOUR SPACE

- $6 \times$ rate $\$ 745.00$ per each insertion
- Reaches 239,312 readers
- Fast reader service cycle.
- Short lead time for the placement of ads
- We typeset and layout the ad at no additional charge

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS, RADIO-ELECTRONICS, 500B Bi-County Blvd., Farmingdale, NY 11735.

RADAR SPEED GÜNS. Professional (used by police). From $\$ 275$. Used for clocking speeds in baseball, car/boat racing, bowling, skiing, etc. ZENITH SSAVI \$169 + . Reconditioned, original UHF equipment. Satellite components. Surplus TV equipment: $\mathrm{N}-12$, SB-3, Hamlin 1200, Ztac, etc. Converters amplifiers, TV acessories. Catalog \& coupon \$1. SSAVI modification/troubleshooting nandbook $\$ 6.50 \mathrm{ppd}$. AIS SATELLITE, INC. P.O. Box $1226-\mathrm{M}$, Dublin, PA 18917. 215-249-9411
CIRCLE 81 ON FREE INFORMATION CARD

A CAREER START FOR THE 21ST CENTURY. Since 1905, National Technical Schools has helped people build successful careers. Enter the 21st Century through home study courses in Robotics, Computer Technology and Servicing, Microprocessors, Video Technology, Basic Electronics, Transportation Technology, Climate Control Technology or TV and Radio Servicing. For a FREE catalog, call 1-800-B-BETTER. Or write NTS/INDEPENDENT TRAINING GROUP, 456 West M. L. King Jr. Blvd. L.A., CA 90037.
CIRCLE 182 ON FREE INFORMATION CARD

SEE IN TOTAL DARKNESS - BUILD THIS AMAZING IR VIEWER. Applications include; night surveillance, IR photography, laser tracking, fibre optic observations, hi-temp thermal viewing, IR alarms, IR communications \& controls, IR astronomy \& microscopy, document examination, painting \& stamp authentication etc. Kit $\$ 189$ delivered. (Dealers wanted). Catalog \$1. 514-739-9328. OCTE ELECTRONICS, Box 840, Champlain, N.Y. 12919
CIRCLE 190 ON FREE INFORMATION CARD
automatically refresh all the memory cells located in that row.
A 4164's memory matrix is organized as 128 rows by 512 columns, so it's only necessary to sequence through 128 addresses to completely refresh the device. We're using 7 address lines, (A0 to A6), because two to the seventh is 128. On the simplest level, refresh is done by putting out a 7 -bit address and strobing ras, but there are other things to deal with as well. As we'll see, timing is the really critical factor and the state of the othermemory-control pins has to be considered as well.

Third Section

The last section of our circuit handles the I/O. It's all well and good to build a system that can properly massage dynamic RAM, but it's not much good unless there's some way to store and access the data in the RAM. Any system wanting access to our circuit only has to give it an address, data, and a read or write request, and then sit back until it's notified that
the job is done. Doing that with static RAM is simple, but the constant refresh activity that is going on in a dynamic RAM system complicates things.

Servicing a memory request means accessing a location somewhere in the memory array's address space. The chances are slight that the requested location is going to be on the row that's currently being refreshed; and it would take too long, and require a lot of extra circuitry, to wait until the refresh circuitry reaches the particular row containing the requested location. An external memory request means that the refresh activity has to be halted, access has to be given to the requested location, and then the refresh circuit can regain control of the memory.

If you're beginning to think that here is a real nightmare for a circuit designer, you're starting to appreciate and understand the reservations that most circuit people have about using dynamic RAM. Given all the needs of our
system, putting one together with a gates-only approach would be extremely complex, even if the job were done using MSI components.

One of the major problems when dealing with dynamic RAM is the strict timing parameters. A standard 4164 will retain the data stored in its pint-sized capacitor cells for only 2 milliseconds. That means that your circuit has to perform a refresh on each cell within 2 milliseconds or the data is lost.

Since a RAS-type refresh works on a whole row at a time, and since there are 128 rows in a 4164 , the refresh must be performed at least every 16 microseconds. The circuit that takes care of all that for you must be designed to sequence through several steps for each refresh operation.

1. The refresh counter has to increment to the next address.
2. That address has to be put on the address bus for the RAM.
3. A ras signal has to be generated and fed to all the RAM.
continued on page 81

MAKE

 climb up the electronics ladder to wmoney is. But, if that's where you w
that's what you must do - work ha
and getting the right credentials, ev
lew sacrifices. A B. S. degree and
that rightly goes along with it can giver
ladder-climbing equipment in your
cess in electronics.
The accredited Grantham non-t
Degree Program is intended for
employed workers who want to upg
tronics careers.

You say you're already trained in electronics but that you're not making enough money??? Well then, maybe you don't have an accredited bachelor's degree to prove that your education is up to snuff! Check out the Grantham Inde-pendent-Study B. S. Degree Program. It could make a dollars and sense difference in your electronics career.

Grantham offers this program, complete but without laboratory, to electronics technicians whose objectives are to upgrade their level of technical employment. Since the field of electronics is so enormous, opportunity for advancement is always present. Promotions and natural turnover make desirable positions available to the man who is ready to move up.

Grantham College of Engineering 10570 Humbolt Street

 Los Alamitos, California, 90720
Put Professional Knowledge and a

 COLLEGE DEGREE in your Electronics Career through Independent Home StudyStudy materials, carefully written by the Grantham College staff for independent study at home, are supplied by the College. Your technical questions related to these materials and the lesson tests are promptly answered by the Grantham home-study teaching staff.

Recognition and Quality Assurance

Grantham College of Engineering is accredited by the Accrediting Commission of the National Home Study Council, as a degree-granting institution.

All lessons and other study materials, as well as communications between the college and students, are in the English language. However, we have students in many foreign countries; about 80% of our students live in the United States of America.

Grantham College of Engineering RE787 10570 Humbolt Street, Los Alamitos, CA 90720

Please mail me your free catalog which explains your B.S. Degree independent-study program.

Address

City
State Zip

UNTIL THE INVENTION OF THE TRANsistor, car radios had a reputation for outstanding sound quality. Compared to the typical table radio of its day-which was no slouch when it came to a well-balanced sound-the car radio had more output power and less distortion, a tracking loud-ness-compensated volume control, and a relatively large speaker of 6×9 inches that was specifically designed to hamdle the extra output power and the extended low frequency response of a car radio. Most important of all, the labyrinthine dashboard served as a superb enclosure for the speaker, thereby providing an enhanced bass response. In fact, one often looked to purchase a home radio that had the solid-bass sound quality of a car radio.

Unfortunately, transistors allowed manufacturers to cheapen the overall design of car radios, while the down-
sizing of the average family-size vehicle made it difficult to squeeze large speakers into a small dashboard, which by itself no longer functioned as a decent speaker enclosure. In a sense, we might say that the transistor radio and the conpact car led to second-rate autosound, and several generations of young, new-car owners never had the thrill of hearing truly outstanding autosound.

However, as highway sound got progressively worse, high-fidelity systems for the home became less expensive. The "hi-fi player" became a common household appliance, and listeners soon demanded hi-fi sound for their cars (never knowing that grandma and grandpa used to sit out in the car when they wanted to hear "concert hall" sound).

Early highway hi-fi

The first of the so-called "high-fidelity autosound systems" was really a misnomer, for it was not much more than an nomer, for it was not much more than an
8 -track or cassette player piggybacked on a conventional car radio. By any standard of reference, the sound quality ranged from poor to miserable.

Fontunately, today's listeners are more demanding. When manufecturers realized that audiophiles were willing to spend considerable sums to pat high-fidelity sound in their cars, many well-known companies specializing in hi-fi components for the home entered the autosound field. Those companies, as well as a
number of new firms that chose to spefield. Those companies. as well as a
number of new firms that chose to specialize in autosound, actually succeeded in approximating the sound quality of a home system in the restricted contines of

The
pro-
of
Thill
never
used
inted to

Highway hi-fi isn't as good as being in the concert hall, but it can come close.

FRANK VIZARD
the modern, downsized vehicle In fact, once hi-fi was available for cars, like early home stereo it soon attained cull status, becoming the latest "must have" for the up-and-coming young professional-or anyone else who wanted to be part of the "hav ing it all gencration."

To fulfill the fantasy of sitting in Philharmonic Hall while barreling to the next stoplight. the new gencration of autosound stereophiles actively sought out the small coterie of installers having the acoustical expertise needed to compensate for the harsh environmental conditions posed by a moving vehicle. The best among those installers learned how to match specific products to individual car models to get the best sound possible. The lessons learned by the early pioneers in autosound passed into the mainstream of high-fidelity sound, and sound systems tailored to specific cars are now a commonplace objective that is being met on two different and distinct levels.

On one level, car manufacturers have recognized that high-fidelity highwaysound can be an important consideration to potential new-car buyers, so many models either are supplied initially with a high-fidelity sound system, or make it available as an optional package. Generally, the factory-installed hi-fi systems are acoustically tailored to a particular model car through the expertise of recognized hifi experts; in particular, speaker manufacturers. For example, General Motors' Delco Radio Division has developed a partnership with Bose Corporation. Similarly. Ford relies on the expertise of JBL, and Chrysler seeks the advice of Infinity Systems

On another level, a legion of autosound retailers who specialize in installing various brands and types of equipment have become what is collectively called the "iftermarket." The aftermarket survives because its offerings are generally more advanced than the equipment sold with most new cars. The "advancements" are principally in the area of features and flexibility. While the car companies can offer a good, basic autosound system, the array of aftermarket equipment available is such that you may find:

1. Products having more conveniences and better performance than the factory installed equipment.
2. Equipment as good as what is usually supplied factory-installed, but at lower cost than what the car dealer charges. Although the car dealers do offer the convenience of one-stop shopping, if you're willing to spend time cheeking out several dealers the chances are that youll end up with better sound and features for the same basic cost

Buying an autosound system necessitates making choiees in three areas: signal source, power, and speakers. Each area, however, has a common consideration:
the space limitation of your vehicle. Different cars have variously-sized holes slated for radios and speakers. A particular cassette/receiver, for example, might not fit into a dashboard without extensive, and often expensive, cutting to enlarge the opening. Conversely, a small unit may not fit without the use of an adapter to fill up the extra space left in the opening. Likewise, the almost "standard" 6×9-inch speaker will not tit easily-it at all-into compact and subcompact cars.

Choosing a signal source means opting for a product that offers a radio, tape, or Compact Disc (CD) combination. To complicate your decision, the coming months will see the arrival of Digital Audio Tape (DAT), a new cassette format that rivals the performance of even the compact disc.

Although existing autosound speakers and amplifiers are compatible with DAT. because of the projected high initial expense of the carly DAT players, at least for the foreseeable future the primary prerecorded signal source for highway hi-fi will be Dolbyized cassette tapes; followed by the Compact Dise, which is only now starting to make significant inroads into autosound installations.

Autosound CD player equipment is available in a number of configurations. $\mathrm{CD} /$ receivers are similar to cassette/receivers in that they combine an all-stereo AM/FM or an AM/FM-stereo receiver with a compact disc player. Typicall of CD/ receivers is the Audiovox HCD-IOOO. The tuner section includes 12 station presets that you can program with your favorite radio stations, a station seek that automatically locates the next strongest station, and a scan for easy sampling of many different stations.
The HCD- 1000 's CD section offers an auto-index that allows the user to preview each disc "track" or selection for eight seconds, a repeat button for playing the track over again, fast-forward and fast-
reverse selection search, and digital indicators for the track number and elapsed time. Suggested list price for the HCD1000 is $\$ 699.95$.

While the $H C D-1000$ is a typical $\mathrm{CD} /$ receiver, it is somewhat unusual in that the dise must be inserted into a cartridge before it can be played. The cartridge system is also used by JVC, Yamaha, Clarion, and Blaupunkt to facilitate loading while also providing the disc with much added protection.

Pioneer's DIN-mount DEX-77 CD/receiver is one of the most high-tech models available; it is specifically designed to withstand the rigors of an automotive environment. It uses a three-beam tracking system to insure error-free tracking, and a "Last-Address Memory" function that ensures pickup on the right track even on rough, jarring roads. The CD player can be programmed for the order of track play, automatic scan, all track repeat, and random play, whereby the player automatically shuffles the order of track play. The receiver section features a "Best Station Memory," which remembers the six strongest stations in descending order of signal strength. The Pioneer DEX-77 is priced at $\$ 850$.

Player-only models are another CD configuration. These tuner-less CD players may be suitable if your car is already equipped with a cassette/receiver and you simply want to have the option of CD.

If you want to listen to both CDs and cassettes, you maly want to buy a cassette receiver that is equipped with an input jack for a CD player. The jack gives you the option of easily adding a personal $C D$ player by simply plugging it into the jack. Conversely, Sanyo's CD players have an input jack for "Walkman-type" personal tape players.

Sony offers an alternative to those wanting to listen to both cassettes and CD's: That product is a slim cassette-only player to be used in conjunction with its companion model $C D X-R 88$ CD receiver.

WORRIED ABOUT THEFT? Some receivers, like this one from Alpine, can be slipped out of the dash easily for concealment.

List price for the $C D /$ receiver is $\$ 750$, while the add-on cassette player has a suggested list price of $\$ 270$

A related product is the Philips (D-IO, an autosound CD player that slides out of the dashboard for use as a personal or portable CD player. List price for the $C D-I O$ is $\$ 400$

Another approach to CD is provided by Sony and Alpine. Both companies offer CD dise changers that mount in the trunk A cable from the changer to a control unit mounted up front near the driver's seat allows the driver (or passenger) to control the music selection. The Alpine changer holds 12 discs in a removable "magazine," while the Sony Disclockey holds 10 dises. The Alpine control unit mounts in-dash while the Sony controls can be hamd-held or mounted. Optional tuners are available for both units so that the CD changer can also function as an AM/FMstereo radio

The cassette/receiver may represent an older technology, but they are still the mainstay of most autosound systems. Because of its nearly universal use, development of cassette/receivers has not ground to a halt since the introduction of CD . The old "tin can" with two knobs on either side is giving way to sleek, flat-panel (no knobs) models housing more features than some of the older models could ever hope to offer.

High-tech

A number of companies, in fact, are offering cassette/receivers in which only the cassette mechanism represents older technology. A case in point is Blaupunkt's Berlin TQR 07 model listing for $\$ 1500$. The TQR 07 incorporates so many features that many of the buttons on the faceplate have multiple functions defined by the mode seleeted.Possible modes are tape, radio, security, and ARI, the latter being a system that either turns up the radio volume or interrupts tape play during trallic advisories from participating radio stations. An LCD (Liquid Crystal D isplay) indicates the selected mode.

In addition to the more commonplace features found on virtually every cassette/ receiver, the TQR 07 features AM stereo, 16 station presets, last-station memory, and an automatic volume control that adjusts to changes in ambient noise, plus Dolbv-B and Dolby-C noise reduction for eliminating tape hiss

Coordinating all the functions of the $T Q R 07$, including monitoring the tuning and adjusting the AM and FM filtering, is the task of a 16 -bit, 32 K microprocessor that uses a digital data bus to relay information between the dash-mounted control panel and cassette deck, and an independent module that houses the tuners and the volume- and tone-control components. Use of a separate mounted-out-of-sight module is a technique used by an increas-

NEXT STOP: DIGITAL

What's coming in car audio in the future? DAT or Digital Audio Tape. DAT, which has specifications rivaling those of compact discs, is a practical format for car audio because it is easy to handle. A digital sudio tape cassette, is about half the size of a standard cassette, yet it has a twc-hour capacity. A self-closing door pro-tec-s the tape, so that special handling isn t required.
At press time, there is still some doubt about whether the DAT format will ever reach the U.S. market because the recording industry is insisting that anti-taping devices be included in all DAT recorders (so that pre-recorded material cannot be taped) and the CD player manufacturers are concerned that DAT players could cut into their market and perhaps kill

ing number of other manufacturers, including Kenwood and Sony.

Technology is also having a great effect on the appearance of cassette/receivers. Among the most dramatic is the appearance of Pioneer`s KEX-900. A single LCD faceplate displays information on five key functions: $\triangle M / F M$ tuning, cassette deck, graphic equalizer, spectrum analyzer, and time (clock). A seven-band equalizer offers more precise adjustment of the trequency response than does conventional tone controls, while the spectrum analyzer presents a visual indication of the program's frequency content

Cassettes are loaded into the KEX-900 by flipping down the front panel. Behind the door is the cassette mechanism and a number of less-freguently used controls. The "hidden door" trick is used by other manufacturers as well. The flip-down door on Sharp's $R G-F 882$, for example, conceals a seven-band equalizer. List price for Pioneer's KEX-900 is $\$ 580$. Sharp's $R G-F 882$ lists for $\$ 449.95$

Most technological advancements appear first in the higher-priced cassette/receivers. There are exceptions, of course. Fujitsu's model Ten, for example, includes a dual azimuth adjusting system in its series of cassette/receivers that list beiween $\$ 250$ and $\$ 350$. (The head-to-tape alignment of auto-reverse decks can sometimes be accurate in one direction
the CD industry. However, as you can see from the photos, the tape manufacturers and the hardware manufacturers are ready for the new format.

We'll keep you posted on the legal questions regarding DAT; and on its technical specifications in upcoming issues.

but skewed in the opposite direction-an error that can severely effect high frequency response. Dual-azimuth adjustments optimize the alignment for each of the directions.)

A feature becoming increasingly common on high-end autosound equipment is a built-in security system. Gencralty, the security system requires that a three to tive digit code be entered via the preset station buttons before the CD or cassette/receiver can be used: The equipment is inoperable until the eorrect code is entered. Another anti-theft system allows the user to simply slide the radio or the uming unit from a dash-mounted sleeve so it can be concealed in the trunk, or even carried away from the vehicle.

More volume

As a general rule of thumb, high-end autosound systems usually provide more output power than "original equipment or "replacement" receivers. The reason for the extra power, of course, is to avoid amplifier overloal when the volume is cranked up to overcome ambient road and car noises. Power capabilities vary enormously. For example, the specialty autosound amplifier maker HiFonics Corp. offers amplifiers ranging from a low of 16 watts per channel to a high of 275 watts per channel

Although the average autosound stereo

NRI Trains You At Home-As You Build Your Own IBM PC Compatible Computer

GET THE KNOW-HOW TO SERVICE EVERY GOMPUTER ON THIS PARE MOBE

Learn the Basies the NRI Wayand Earn Good Money Troubleshooting Any Brand of Computer

The biggest growth in jobs between now and 1995, according to Department of Labor estimates, will occur in the computer service and repair business, where demand for trained technicians will actually double.

You can cash in on this opportunity-either as a full-time corporate technician or an independent service-person-once you've learned all the basics of computers the NRI way. NRI's practical combination of "reason-why" theory and "hands-on" building skills starts you with the fundamentals of electronics, then guides you through advanced electronic circuitry and on into computer electronics. You also learn to program in BASIC and machine language, the essential languages for troubleshooting and repair.

Tołal Computer Systems Training, Only From NRI

No computer stands alone . . it's part of a total system. To really service computers, you have to understand computer systems. And only NRI includes a powerful computer system as part of your training, centered around the new, fully IBM PC compatible Sanyo 880 Series computer.

IBM is a Registered Trademark of IBM Corporation. Epson is a Registered Trademark of Epson America, Inc. Apple and the Apple logo are Registered Trademarks of Apple
Computer, Inc. Compaq is a Registered Trademark of COMPAQ Computer Corporation. i 1985 AT\&T Technologies, Inc.
u start with
き step－by－step sembly of the new，highly－rated，Sanyo mputer．You install and trouble－ oot the＂intelligent＂key－ ard．Then you assemble the wer supply，install the disk ive，and add extra memory to re you a powerful 256K RAM system e new 880 computer has two operating speeds： undard IBM speed of 4.77 MHz and a remarkable bo speed of 8 MHz ，making it almost twice as it as the IBM PC．Next，you＇ll interface the high－ solution monitor and begin to use the valuable software ；o included with your complete computer system．

It all adds up to confidence－building，real－world perience that includes training in programming，circuit sign，and peripheral maintenance．You＇ll be learning out，working with，servicing，and troubleshooting an tire computer system—monitor，keyboard，computer， disk drive，power

supply－to ensure that you have all the essential skills you need to succeed as a professional computer service technician．

No Experience Needed， NRI Builds It In

This is the kind of practical，

Your NRI total systems training includes： －NRI Discovery Lab＂to design and modify circuits－Your four－function，digital multimeter with waik－you－through instructions on audio tape • Digital logic probe for visual examination of keyboard circuits＊The newest Sanyo 880 Senes Computer with＂intelligent＂keyboard and 360K double－density，double－sided disk drive • High resolution monochrome monitor • 8 K ROM，256K RAM • Bundled sottware including GW BASIC，MS－DOS， WordStar，CalcStar－Reference manuals， schematics，and bite－size lessons． hands－on experience that makes you uniquely prepared，with the skills and confidence you need for success．You learn at your own convenience in your own home．No classroom pressures， no night school，no need to quit your present job until you＇re ready to make your move．Your training is backed by your personal NRI instructor and the NRI technical staff，ready to answer your questions and help you when you need it．You get it all with NRI at－home training

100－Page Free Całalog Tells More

Send the postage－paid reply card today for NRI＇s big， 100 －page，color catalog on NRI＇s electronics training，which gives you all the facts about NRI courses in Microcomputers， Robotics，Data Communications，TV／Audio／Video Servicing， and other growing，high－tech career fields．If the reply card is missing，write to the address below．

SEND COUPON TODAY FOR FREE NRI CATALOG！

For Career courses
approved under GI Bill check for delails
McGraw－Hill Continuing Education Center
最！ 3939 Wisconsin Avenue，NW，Washington，DC 20016 解青 We＇ll give you tomorrow．

V CHECK ONE FREE CATALOG ONLY
\square Computer Electronics
\square TVIAudio／Video Servicing
－Satellite Electronics
Robotics \＆Industriai Control
\square Industrial Electronics
Telephone Servicing
\square Digital Electronics Servicing

Basic Electronics
\square Electricians
\square Small Engine Repair
Air Conditioning．Heating，\＆Ref
Locksmithing \＆Electronic Security Photography
Bookkeeping \＆Accounting

IF YOU LIKE YOUR MUSIC to go on forever, you can install a compact disc remote changer in the trunk of your car and play music from up to 12 CD's.
system contains only one stereo amplifier that is intended for use with al single pair of left and right speakers, many antosound installations have multiple speaker systems (perhaps front and rear), and the two stereo speatier systems are simply connected in parallel (left front to left rear and right front to right rear, or criss-cross). Connecting the speakers in parallel splits each channels output power, which was interded for one speaker, between two speakers. The alternative to sharing one stereo amplifier between two speaker systems is a receiver such as Kenwood's KAC-8070. which has two independent stereo amplifiers, each specifically intended to drive a single stereo speaker system. The KAC-8070 lists for $\$ 279$.

One brand, manulactured by the ADS Company, has gone as far as to develop

TO AVOID DAMAGE, and to make it easier to handle CD's without fingerprints, some autosound compact disc players require that each disc be installed in a special protective cartridge.
two six-channel amplifiers, the $P H / 2$ and the $\mathrm{PH} / 5$, which allow a subwoofer to be easily added to an autosound system. List prices for the PH/2 and PH/5 are $\$ 320$ and $\$ 560$ respectively. The $P H / 2$ provides 20 watts per channel. while the PHI5 delivers 40 watts per channel. ADS also makes four-channel amplifiers, the $P Q 8$ and the $P Q 20$, listing for $\$ 200$ and $\$ 680$ respectively.

Speakers

Speakers come in a wide variety of configurations and sizes. The material used for the cone itself can range from traditional paper to polypropylene, a flexible material that is more resistant than paper to heat, cold and moisture

The magnet, the other critical speaker component, is also being improved. The GM Delco/Bose system in the Cadillac Seville and Eldorado, and the Chevrolet Camaro, uses a new high-energy neodymium magnet. The high energy potential of neodymium allows Bose to use a smaller magnet. thereby reducing the overall size of the speaker, particularly in its depth.

Speakers range in size from $3 / 4$-inch tweeters 106×9-inch woofers, and there are various two, three, and even four-way combinations of tweeters, midranges, and woofers available. Two companies, Sparkomatic and Philips, cven have models with the speakers and their amplifiers built into the same enclosure.

Some autosound systems use one or two subwoofers to reproduce extremely low bass frequencies. One large wooter is often enough considering the omnidirectional characteristics of low frequencies.

Two smaller subwoofers are used when space limitations prohibit the use of a larger woofer.

Special speakers have also been developed for light truchs and other types of sports/utility vehicles. Typical of that new breed if speakers is The Force from Jensen, which consists of a large, wedgeshaped enclosure housing an eight-inch wooter and an upward-firing tweeter. Its list price is $\$ 299.95$.

Crossover networks handle the routing of specific frequencies to the appropriate speaker. Most crossover networks are offered as separate components. Some speakers, such as the the $A L S-500$ from Altec Lansing, have built-in, highly efficient crossover networks.

An autosound system can be a very complex purchase. A vehicle's environment is hostile to the the reproduction of high-fidelity sound. The amount of equipment sometimes needed can be intimidating, and its installation can be trichy and time-consuming. In fact, tackling anything heyond the most basic installation is probably not advisable unless you have the time and skill required. However, you should keep in mind that most dealers won't do installation work unless they have sold you some or all of the necessary components.

When all is said and done, however, you should have a system that will rival your home system. When that happens, you`ll probably be joining the thousands of people who do most of their music listening on the road.

R-E

> Like writing a great .ovel, designing and installing a great auto sound-system is part inspiration, and part perspiration.

FRANK VIZARD

WHEN INSTALLED PROPERLY, AV AUTOmotive sound system can become a concent hall on wheels. In fac, many owners of high-end systems fird themselves listening to masic almost exclusively in their cars since the acoustical effects are often superior to those offered by their home systems.

But there can be more to infralling a system than meets the eye. When selecting a system, the type of velicle z is to be installed in should be carefully-considered. Space limitations, for exantple, may restrict the size of the speakers used. Likewise, every dashbcard doesn't nave the same size radio hole, which means
that not every cassetter'receiver Cr CD' tuner will fit in every car.

Compounding the problem is alare of standardization that can confound zren the most-gifted do-it-you-selfer; one -anufacturer's green wire is another's yalow wire. And improper wiring can lead to blown speakers and amplifiers. Father. unidentifiable noise can be cauced t_{y} almost any electronic componen in the car. including the alternator or ignition system. Such noise can render a syserr anlistenable, and finding its source car te a time-consuming nightmare. Therefore, it's not all that surprising that a \$0000 installation often can tale up to 36 Lrours
to accomplish if the installer is a pro; an amateur installer is a most sure to be at it a lat longer.

Despite all of trat, a top-notch sound system can se found for just about any application anc for just about any car. To prove that, Radio-Dfectronics has assembled a pertiolic of eight car-audio systems. Four systems are available as criginal equipment from car manufasturers. The remainder use aftermarket eqriment installed by car-audio retailers to satisfy particular needs and varying installation requirements. All the systems have one thing in common: They'll please aven the most diseriminazing listener.

Chevrolet Camaro:

Delco/Bose

General Motors was the first car maker to turn to a well-known loudspeaker company. Bose Corp, for help in developing a premium sound system. While Delco, GM's radio division, and Bose have joined forces to outfit a number of GM cars with top-flight auto sound-systems, the Delco/Bose system installed in the 1987 Chevrolet Camaro shown in Fig. I represents the best the partnership has to offer.

The most noticeable difference between the Delco/Bose system in the Camaro and the Delco/Bose system installed in other GM cars is the size of the speaker enclosures. Each enclosure is atso required to house a 25 -watt amplifier. Such enclosures generally take up a lot of room, which is not much of an issue in a large Cadillac but of definite concern in a much smaller Camaro.

For the 1987 Camaro. Bose reduced the size of the speaker to a thin wafer only 32 mon deep. That reduction in size at no cost to sound quality is made possible by one of the first commercial uses of neodymium, a high-energy magnetic material. The "water" speakers are also four times lighter than their predecessors. The new speaker/amplifier modules, like the

FIG. 1-SHALLOW CLEARANCES in this Chevrolet Camaro required designing a speaker only $32-\mathrm{mm}$ deep.

FIG. 2-THIS DELCO/BOSE cassette/receiver features automatic recognition of Dolby-B encoded tapes
old enclosures, are mounted in the doors and on the rear deck. The same technology is also being used in the new Ca dillac Allante, Seville, and Eldorado.

Like its competitors, a Delco/Bose system positions its loudspeakers so that the listener is off-axis to the near speaker and on-ax is to the far speaker. Delco/Bose believes it has accomplished its task so successfully that they omit the left/right balance control typical of other systems.

System Configuration
Cassette/receiver, 4 speaker/amp modules (Deico Bose)

Key Features

Wafer-thin (32 mm) speakers, automatic Dolby-B recognition, AM stereo

Power (per channel)	
25 watts	Price
$\$ 900$	

The cassette/receiver, shown in Fig. 2, does include most of the other features found in competitive models. Those features include auto reverse, bi-directional music search, seek/scan and Dynamic Noise Reduction (DNR) for the radio, and five AM and FM presets. AM stereo is also available.

More unusual is the fact that the cassette/receiver automatically recognizes Dolbv-B encoded tapes and makes the appropriate adjustment for playback.

The Delco/Bose system in the Camaro lists for about $\$ 900$. Add about $\$ 200$ for the standard radio that comes with the car and the overall cost is roughly $\$ 1100$. A compact dise player is not available.

Dodge Lancer:
 Chrysler/Infinity

The premium sound system offered by Chrysler in its 1987 Dodge Lancer (Fig. 3) is the least expensive and perhaps the most unusual of the auto sound offerings made by the "big threc" U.S. car-manufacturing companies.

FIG. 3-THE CHRYSLER/INFINITY sound system is offered as standard equipment in this Dodge Lancer.

Like Ford and General Motors, Chrysler entered into a partnership with a major atudio company to develop that system. In Chryster's case, the audio partner is Intinity Systems. Inc.. a well-known maker of home and car loudspeakers.

The Chrysler/Infinity system uses six speakers. One pair of $3 / 4$-inch tweeters are installed in the dashboard. Another pair of $51 /$-inch midrange/woofer speakers are in the front doors. Lastly, a pair of 5×7 inch coaxial speakers are mounted on the rear deck.

How those speakers are powered is the unusual feature of the Chrysler/Infinity system. While many auto sound systems are bi-amplified, meaning that separate amplifiers are used to power wooters and tweeters/midranges, the Chrysler/Infinity systems use an unusual method of bi-amplification. The tweeters in the dashboard and in the rear deck are powered by amplifiers built into the cassette/receiver. The door speakers and the woofers in the rear, however, are independently powered by miniature amplifiers attached to the back of each speaker. The audio signal must also pass through a low-pass tilter before reaching cach woofer. A total of 32 watts power the speakers while an additional 56 watts power the woofers.
The Chrysler cassette/receiver has many of the features common to the genre, including auto reverse, Dolby B, DNR, AM stereo, and 10 AM and 10 FM radio presets.

The digital display is a vacuum-fluorescent type. It shows radio frequency, tape type, noise-reduction status, and tape-play direction. When the unit is shut off, the display doubles as a clock, accurately showing the time of day. The display is clearly visible in sunlight. It's visible at night, too: All displays and controls are backlighted.
Less common is a built-in, five-band equalizer that takes the place of the tone controls. With it, sound can be tailored for

System Configuration Cassette/receiver, 6 speakers (Chrysler/infinity)
Key Features
Bi-amplification, ambiance control, joystick balance control, AM stero
Power (per channel)
See text
$\$ 600$

the listener's preference. Slide controls allow the adjustment of bass, midbass, midrange, upper midrange, and treble. There is also an "ambience" feature, which is designed to create a "concert hall" effect.

The relative merit of the ambience feature is questionable, however, since even the owner's manual advises against its overuse. Also, Chrysler has opted to have front/rear and lett/right balance controlled by a joystick that rotates in all directions, making placement of the soundstage even easier than usual.

The price of the Chrysler/Infinity system is $\$ 600$. The same system you'll find also available in the New Yorker and LeBaron GTS.

Liricoln Town Car:
 Ford/JBL

The Ford/JBL sound system in the Lincoln Town Car (shown in Fig. 4) offers the most power and uses the highest number of drivers of any auto sound-system offered by an American car company. Like its two major competitors, Ford used an audio company. JBL, as its partner in developing its system.

The Ford/JBL system, which is shown in its entirety in the opening of this article on page 39, uses six speakers-a pair of speakers is mounted in the dashboard, in the front doors, and on the rear deck. The five-inch dashboard speakers are coaxial units, the 6×9-inch rear deck speakers

FIG. 4-THE LINCOLN TOWN CAR is equipped with the Ford/JBL system illustrated at the beginning of this article.

FIG. 5-THIS SEPARATE CD PLAYER is offered as an option in the Town Car.
are three-way units, and the $51 / 4$-inch door speakers are full-range units. The speakers are powered by a 140 -watt four-channel amplifier.

The Ford/JBL system in the Town Car has three potential sources of musicradio or tape from the cassette/receiver, and compact disc from a separate player. See Fig. 5. The cassette/receiver is rather unusual in that the radio is digitally tuned but the controls for the cassette section operate very mechanically, albeit elficiently. Featares include Dolby B. DNR, four-AM and four-FM presets, auto reverse, scek/scan, and bi-directional music search for tape.

The Ford cassette/receiver lacks AM

System Configuration

Cassette/receiver, 6 speakers, optional

 CD player; (Ford/JBL)
Key Features

Optional CD player, automatic tape equalization

Pòwer (per channel)

35 watts

Price

$\$ 1500$ (with CD player)
stereo, a feature provided by GM and Chrysler. However. Ford's unit automatically sets the correct tape egualization for tape playback

The compact-disc player offers most of the features you would expect to find, including automatic music search to locate any track at the touch of a button, scan, and a dual repeat mode for replay of an individual track or the entire disc.

The Ford/JBL system is priced at about $\$ 1500$. Without the CD player, system cost is about $\$ 850$. That price includes the cost of the equipment that is supplied as standard on the Town Car; that equipment must be removed before the Ford/JBL system can be installed.

Sterling 825S/825SL:
 Philips/Elac

One of the newest car lines on the market is the Sterling, the product of a joint development program between Great Britain's Austin Rover Group and Japan's Honda Motor Co. The engine and the exterior are of Japanese design while the interior creature comforts are of European design. There are two models of the Sterling, the $825 S$ and the $8255 L$ (shown in Fig. 6).

The sound system in the $825 S L$ is a mixture of Dutch and English expertise. The cassette/receiver is made by Philips, the Dutch electronics manufacturer. The unit includes most of the standard features you would expect to find, including auto reverse, Dolby-B noise reduction, and five-AM and five-FM presets.

The cassette/receiver also has two rather unusual features as well. The first is

THE CASSETTE/RECEIVER in the Sterling $825 S L$ is made by Philips.
an anti-theft system; it is armed using a three-digit code that is entered into the cassette/receiver using the five preset buttons. The second is an "auto-store" feature; that leature lets you override the permanently stored presets, without erasing them, and select the five strongest radio stations in an area. It can be an especially handy feature if you're traveling out-of-town

Power is supplied by an amplifier capable of delivering 20 watts to each of four channels. (The sound system in the $825 S$ comes without the amplifier, reducing

System Configuration Cassette/receiver, amp (Philips); 6 speakers (Elac)
Key Features
Anti-theft system, temporary preset override
Power (per channel)
20 watts
Price
\$1000

power to only seven watts through each of four channels.)

The speakers in the $\$ 25 S L$ are supplied by Elac, a British company. The rear deck houses a pair of $61 / 2$ inch coaxials, while a pair of $51 / 4$-inch full range and $3 / 4$-inch tweeters are separately installed in the front doors. The speaker setup is standard for a car of the Sterling type, providing a balanced sound radiation pattern, front and rear.

The sound systems in the Sterling $825 S L$ and $825 S$ come as standard equipment in the cars. The $825 S L$ carries a sticker price of $\$ 23.900$; the estimated retail value of the sound system is about $\$ 1000$. The $825 S$ has a sticker price of $\$ 19,000$; its lower powered sound system is somewhat less expensive than that of the $825 S L$.

Porsche 911 Carrera Custom installation

For a litile more money, you sometimes get a lot more. A case in point is the Autotek (855 Cowan Rd., Burlingante, CA 94010) sound system shown in Fig. 7, which has been installed in the 1985 Porsche show n in Fig. \&. At $\$ 1000$. that system is only slightly more expensive than aluto sound-systems offered by car companies. but offers more power and features.

Why is more power better? Assuming that the amplifiers incet acceptable standards, higher power levels allow us to hear low music levels more clearly. Therefore, due to road and wind noise, power is very critical in a car.

FIG. 7-A CD INPUT and Dolby-C noise reduction are two of the advantages offered by the Autotek SR500.

FIG. 8-THE PORSCHE 911 Carrera.

FIG. 9-THE AMPS and the crossover.

The $S R 500$ cassette/receiver that is part of the system hats many of the usual features: auto reverse, 12 radio presets, seek/ scan, and electronic tuning. But two features of the $S R 500$ can not be lound in the cassette/receivers offered by the major U.S. car compranies. One is Dolbv-C noise reduction (in addition to the more

System Configuration
Cassette/receiver, 2 amplifiers, two-way crossover network, 6 speakers (Auto Tek)
Key Features
Dolby C, CD input
See tex: Power (per channel)
$\$ 1000$

usual Dolby B). The other is a CD input that allows a personal compact-dise player to be plugged into the system.

The SR500 supplies a greal deal of power on its own: 20 watts per channel. In that installation, the 20 watts are used to power a pair of coaxial speakers mounted bencath the dashboard at the extreme right and left.

In addition, a pair of anmplifiers with a rating of 130 -watts each power the other four speakers in the system: a pair of fourinch three-way speakers in the doors and a pair of 6×9-inch three-way speakers in the rear dech. Signal routing chores are performed by an XOU-l two-way crossover (Fig. 9).

Ford Thunderbird:

Custom Installation

Installing a new sound system doesn't necessarily mean junhing all the original equipment that came with the vehicle. The sound system in the 1983 Ford Thumderbird shown in Fig. 10 uses the standard Ford cassette/receiver, but adds a variety of equipment from ADS (One P'rogress Way. Wilmington. M^ (01887) and Sony (Sony Drive. Park Ridge, NJ (07(65)). The end result is a fine sound system that uses three sound sources and produces 320 watts of power.

Two of the sound sources are, of course. the standard radio and the cassette; the third is an add-on compact-dise player. Having a CD player in a car is becoming less unusual, but this installation is different in that it incorporates a Sony Disclockey CD changer: Installed in the trunk. the Disc.Jockey stores 10 dises in a removable magazine. See Fig. II. A

FIG. 10-THE FORD THUNDERBIRD.

GMC Jimmy:

Custom installation

Where normal passenger cars fear to travel, four-wheel drive vehicles like the GMC Jimmy love to go. To provide offroad music for an off-road vehicle, a Kenwood (1315 E. Watsoncenter Rd., Carson, CA 90745) music system was added to the Jimmy
The heart of the Kenwood system is the KRC-838 cassette/receiver shown in Fig 12. It is one of a new breed of "theftproof" models available from several attermarket manufacturers. The $K R C-838$ is considered theft-proof becatuse it can be removed by the owner easily; the cassette/ receiver is installed inside a slecve. A lever on the left side of the $K R C-8.38$ releases the unit from the sleeve so that it can be taken with you when you leave the vehicle.

The KRC-838 offers most of what we've come to expect in the way in of features, and adds a few others as well. Both Dolby-B and Dolby-C noise reduction are available, as is Kenwood's own ANRCII circuitry-the latter providing roughly the same benefit as the DNR circuitry found in cassette/receivers offered by other suppliers.
Other features include a signal meter to judge station strength, 24 presets that can be arranged in any combination of AM

FIG. 12-THE LEVER AT THE LEFT lets you remove the Kenwood KRC-838 receiver.
and FM stations, and a "tuner-call" feature that automatically switches on the radio when a tape is in fast-forward or rewind. Lastly, the $K R C-838$ features a mute button that lowers the volume 20 dB ; that's handy for toll booths.

While standard bass and treble controls are incorporated into the cassette/receiver, the system's sound can be more precisely adjusted using the $K Q C-9+100$ graphic equalizer installed under the cassette/receiver. That unit lets you contour the sound over seven bands.

Space is limited in the Jimmy, so all the speakers are installed in the door. High frequencies are reproduced using a pair of $11 / 2$-inch tweeters that feature a built-in overload protection circuit. Midrange and some higher bass frequencies are handled by a pair of five-inch speakers mounted next to the tweeters. Very low bass fre-

System Configuration
Cassette/receiver, 6 speakers
(Kenwood)

Key Features

Dolby C, ANRCII, graphic equalizer,
mute, removable cassette/receiver unit
Power (per channel)
See text

Price

$\$ 2000$
quencies are reproduced by a pair of eight-inch woofers that are installed below the tweeters and midranges.

The eight-inch woofers are very power hungry, requiring a minimum of 35 watts each. That power is supplied by a KAC-8020 amplifier, which feeds 80 watts to each woofer. A second amplifier, a $K A C-8070$, powers the tweeter and the midrange. That amplifier is unusual in that it is a four-channel amplifier delivering two different power levels through each pair of channels. In our system, it is used to deliver 20 watts per channel to the tweeters and another 37 watts per channel to the midranges.

The entire system costs $\$ 2000$.

Chevrolet Corvette:

Custom installation

At first glance, the sound system in the 1985 Corvette, appears to be a perfect marriage of original equipment that came with the car and aftermarket gear. Looks can be deceiving.

In truth, all that's left of what was once a GM Delco/Bose system is the speaker grilles and the cassette/receiver. What's more, the cassette/receiver doesn't work. Its only purpose is cosmetic; it's used to cover the hole in the dash.

The owner of that Corvette has opted solely for a CD/tuner system using Sony's DiscJockey. Unlike the Thunderbird installation discussed previously, this setup makes use of the DiscJockey's optional AM/FM tuner pack, making the Delco radio redundant. Adding the tuner pack was a less expensive alternative to incorporating the Delco/Bose cassette/receiver into the system; the lack of line outputs on the original equipment, as well as some voltage-level problems, would require the use of complicated and expensive switching devices that are also unattractive.

The DiscJockey is built into a special enclosure that sits in the rear of the Corvette. That enclosure also houses two Sony $L 20$ subwoofers, which reproduce all bass frequencies below 100 Hz . Also installed in the enclosure are two Hifonics (845 Broad Ave., Ridgefield, NJ 07657) Callisto electronic crossovers. The Disc-

FIG. 13-THE CD CHANGER'S remote control is stowed away in the center console.

Jockey's operation is controlled via a wired remote control that is stowed away in an accessory compartment in the center console. See Fig. 13

The original Delco/Bose speakers in the car were replaced with Hifonics units. A pair of one-inch tweeters were installed in the dashboard so that the sound will reflect off the windshield and radiate throughout the car. Four-inch midranges were installed in the doors. Another pair of one-inch tweeters and four-inch midranges were placed side-by-side in each of the larger speaker cavities in the rear of the car. The new Hifonics speakers were covered with the original Delco/Bose grilles except for the front tweeters which were covered with acoustically transparent cloth.

The system also incorporates two Hifonics amplifiers. A Thor amplifier

System Configuration CD player/changer/tuner, 2 subwoofers
(Sony); 2 crossovers, 2 amplifiers, parametric equalizer, 8 speakers (Hifonics)
Key Features
10 -disc $C D$ equalizer, 2 changer/player, parametric Power (per channel) See text $\$ 3260$

supplies 125 watts to the rear subwooters while a Gemini four-channel amplifier is used to supply 70 watts to the front and rear speakers.

The system's sound can be tailored to suit your taste with a Hifonics Ceres IV parametric equalizer. The Ceres $I V$ is the only parametric equalizer we know of that is designed for automotive applications. With a graphic equalizer response can be raised or lowered only along predetermined bands. Parametric equalizers, on the other hand, allow you to adjust response within a range of frequenices.
The cost of the upgrade, while ignoring the cost of the original equipment, was $\$ 3260$.

R-E

Building the control board is a straightforward operation. The double-sided pattern is shown in PC Service. Note that because of its large size, the pattern is shown halt size. so it must be enlarged before etching. The board is also available from the supplier mentioned in the Sources box. The supplier provides a board with two-ounce copper, platedthrough holes, and a solder mask. If you choose to etch your own board we recommend that you use a blank with two-ounce plating. solder all components on both sides of the board, and install feedthroughs at any unused pads. The reason for the heavier copper is that it provides better power handling capacity and better noise margins.
Once you've either bought or etched the board. check it for power to ground shorts. Those will be very difficult to locate after all of the components have been installed. Then stuff the board following the parts-placement diagram that is shown in Fig. 1.
All of the control-board components can be obtained from most electronics distributors. The Fujitsu relays specified can be found at many relay specialists. If you have trouble finding them, you can substitute units from other manufacturers as long as they have a contact rating of more than 10 amps. If you make any substitutions, you may also need to modify the board to accommodate the substitutes.

The control board is designed to be
mounted on standoffs in the forward bulkhead of the chassis as shown in Fig. 2. When mounting the board, it should be oriented so that the terminal strip is located at the top edge of the chassis.

The RPC mounts over the board on one-inch standoffs. Use fixed standoffs at the top edge of the board, and hinged standoffs at the bottom. That will allow the RPC to be swung down and out of the way during troubleshooting.

Holes should be punched in the forward bulkhead for the wires. The motor-power, battery-power, and return wires should all be fed through one hole. All other wires, such as the leads from the shaft encoders, should be fed through a second, separate hole. The return wire from the control board's single-point ground should be as heavy as possible. Also, the motor-power wires should be as heavy as required to handle the current they must carry.
If you are going to use large drive motors with current requirements over 10 amps, the two main switching transistors and their associated diodes may be removed from the circuit board and mounted on the forward bulkhead to take advantage of the huge heat-sinking capacity of the robot's chassis. Use sockets, of course. and connect the sockets to the board with short lengths of heavy-gauge wire. After the control board has been assembled and both it and the RPC have been installed, the forward bulkhead will contain all of the robot's electronics. Now we're ready for bench testing.

Testing

To do the testing you will need a DC supply capable of producing $14-30$ volts at 3 amps . If you can't find a suitable supply, you can build one using a highcurrent transformer, a full-wave bridge, and a suitable filter circuit. Be sure to select diodes (for the bridge) and capacitors (for the filter) whose ratings are appropriate. We built a unit that supplied 18volts DC at 3 amps for our testing. Whenever the motors were accelerated too quickly, the power supply sagged, the motor relays dropped out, and that brought the motors to a stop. The power supply was completely adequate for testing, however.
Begin testing by connecting the control board to the power supply, but not to the RPC. Apply power and examine the sleep circuit for proper operation. If it is being clocked at $10-\mathrm{Hz}$ as designed, the state of pin 4 should change once every 15 sec onds. If all is well, you have confirmed that power is correctly bused to the board.

Proceeding, defeat the sleep circuit by soldering a jumper from R10 to ground, causing RYI to close. That will energize the system. (Don't forget to remove that jumper when testing and troubleshooting are completed!) Now you should verify that IC9 delivers +5 -volts DC and that IC30 delivers +12 -volts DC. Also check that +5 volts is available at the correct pins at PL4, the RPC connector.

FIG. 1-ALL OF THE CONTROL CIRCUITRY mounts on one double-sided board. Follow this guide when assembling the board; the patterns can be found in PC Service.

PARTS LIST

All resistors $1 / 4$-watt, 5%, unless otherwise noted
R1, R4, R6, R7-not used
R2, R12, R16, R18-R20, R22, R23,
R26-R28, R30, R34, R36, R37, R39,
R41, R44-10,000 ohms
R3-62,000 ohms
R5, R9- 15,000 ohms
R8-4700 ohms
R10-220 ohms
R11, R35, R42, R43- 1000 ohms
R13, R14-1 megohm
R15, R38-47 ohms
R17, R24, R40-100 ohms
R21, R29-0.1 ohms, 5 watts, 1%
R25, R31-R33-100,000 ohms

Capacitors

C1, C2, C4, C5, C13-19, C22, C25, C27, C31-0.1 $\mu \mathrm{F}$, monolithic ceramic
C3-100 pF, 50 volts, ceramic disc $\mathrm{C} 6, \mathrm{C} 10, \mathrm{C} 21, \mathrm{C} 30-2.2 \mu \mathrm{~F}, 50$ volts, ceramic disc
$\mathrm{C} 7-0.002 \mu \mathrm{~F}, 50$ volts, ceramic disc C8- $330 \mathrm{pF}, 50$ volts, ceramic disc
C9- $0.047 \mu \mathrm{~F}, 50$ volts, ceramic disc C11, C12-2200 $\mu \mathrm{F}, 25$ volts, electrolytic
$\mathrm{C} 20, \mathrm{C} 23, \mathrm{C} 24, \mathrm{C} 26-10 \mu \mathrm{~F}, 16$ volts, electrolytic
C28, C29-not used

Semiconductors
IC1, IC2-4051 multiplexer
IC3, IC6-74LS541 octal buffer/line driver
IC4-74LS377 octal D-flip-flop
IC5-ADC0804 8-bit ADD converter
IC7, IC8-74LS374 octal D-flip-flop
IC9-L296 switching regulator (SGS)
IC10-74LS645 octal three-state bus transceiver
IC11-74LS125 quad three-state buffer
IC12-74LS266 quad 2-input exclusive NOR gate
1C13, IC14-8253 programmable interval limer
IC15-74LS32 quad 2 -input or gate
IC16-74ALS520 8-bit comparator
IC17-74LS164 8-bit serial-in/parallel-out shift register
IC18-74LS393 dual 4-bit binary ripple counter
IC19-74LS138 1-of-8 decoder
IC20-LM358 dual op-amp
IC21-74LS259 8-bit addressable latch
IC22-ULN2003 Darlington array
IC23, IC25-4046 PLL
IC24-74LS00 quad 2-input NAND gate
1C26-4060 14-stage ripple counter
IC27-4078 8-input NOR:OR gate
IC28, IC29-dual D-flip-flop
IC30-LM340-12 12-volt regulator

Q1, Q5-2N3906 PNP transistor
Q2, Q6-TIP29A NPN transistor
Q3, Q7-2N3772 NPN transistor
Q4-2N3904 NPN transistor
SCR1-C106Y1 (GE) SCR
D1, D3, D4, D9, D10-1N4001 rectifier
D2, D5, 1N5400 rectifier
D6, D7-1N4148 switching diode
D8-1N754 6.8-volt Zener diode
D11-8R05 Schottky diode (SGS)
Other Components
L1-300 $\mu \mathrm{H}$
RY1-RY5-DPST relay, 12 -volt coil, Fujitsu FBR-631D012 or equivalent
PL1, PL3-26-conductor plug, dual row, 0.025 -inch spacing

PL2, PL6-10-conductor plug, dual row, 0.025 -inch spacing

PL4-60-conductor right-angle plug, dual row, 0.025 -inch spacing
PL5-2-conductor plug, single row, 0.025 -inch spacing

TS1-6 connector terminal strip
B1-see text
Miscellaneous:PC board, IC sockets, heat sinks (Thermalloy 601 or equivalent for IC9, Thermalloy 286 or equivalent for IC30), mounting hardware, nuts, bolts, wire, solder, etc.

FIG. 2-THE ROBOT'S ELECTRONICS mount on standoffs in the forward bulkhead. The control board is shown here; the RPC mounts above it on hinged standoffs.

TABLE 1-OUTPUT FUNCTIOVS

Address	Function
120	Left forward relay
121	Left reverse relay
122	Right forward relay
123	Right forward relay
124	Left motor contol enable
125	Right motor control e rable
126	Beeper
127	not used

If all is well, connect the RPC. Write the following diagnostic word (in the hexnumber base) and execute it:

TESTO BEGIN O 127 PC ! I 127 PC! ?TERMINAL UNTIL ;

As mentioned last time, the scope of this article prevents us from going into a detailed discussion of Forth and its structure. However, note that tie while Forth requires statements like the preceding one to be entered as a single line, for space reasons it is impossible for us to show it that way. When you cnter such statements, be sure to enter them as single lines or they will not be processed correctly. If you are not familiar with Forth, we recommend the book Starting Forth, by Leo Brodie: it is published by Prentice-Hall. You can probably obtain a copy from the Forth

TABLE 2

> (address is 0 to F)
> (write data to latch)
> (write address)
> (set write strobe lo)
> (set write strobe hi)

(write addr, read lo)
(get data)
(set strobes hi)

SOURCES

The following are available from Vesta Technology, 7100 W. 44th St., Wheatridge, CO 80033 (303-422-8088): Bare RE-Robot controller board, \$41; assembled and tested RE-Robot controller board, \$200; assembled and tested RPC, fully populated for the robot function, $\$ 294$. Add $\$ 8.00$ shipping per board. Colorado residents add appropriate sales tax. Mastercard and Visa accepted.

Optical endocers (100 counts/revolution, quadrature output) are available from EMC Corp., 373 Hillsboro Way, Goleta, CA 93117 (805-968-3060) for $\$ 40$ each. California residents must add appropriate sales tax.

Interest Group or at your local computer bookstore

Let's brieHy look at what TESTO is, and how it works. The colon tells the interpreter to compile the following word called TEST() into the dictionary. That word is a hegin-until loop that will loop until activity from the terminal (?TERMINAL) is detected. The loop itself stores a 0 to port 127 H , then stores a 1 to port 127 H . Compilation stops at the semicolon and the interpreter returns to the interpretive mode. After compiling TESTO, you can execute your new word simply by typing TESTO and a carriage return on the keyboard. The word will execute until you touch any key.

During execution, you should observe the output of ICl6, the 74ALS520. The address-latching pulse should be about I microsecond long, indicating that the wait-state generator is working correctly. Now examine the state of pin 12 of IC 21 with an oscilloscope; you should see it toggling. That shows that the RPC and the control board are working together.

Testing the digital inputs and outputs is a very simple process with our operating system in ROM. We have only to write a tew diagnostic words and execute them.

The individual outputs can be toggled with the following test word:

TESTI BEGIN 80 DO 0 $120 \mathrm{I}+\mathrm{PC}$! $11201+\mathrm{PC}$! LOOP 0 UNTIL

The function of each of the individual outputs is as shown in Table 1.

Next, connect a speaker to the J6 and test the beep function:

DELAY 0 DO IO O DO LOOP LOOP ; BEEP 10000
 DO 1126 PC! 2 DELAY
 0) 126 PCl 2 DELAY
 LOOP ;

Notice that here we used "pretty" sourcecode formatting techniques. That becomes increasingly important as the complexity of our code increases
continued on page 78

Dual display delivers both an accurate digital readout and a rapid-read analog display.

YOU PROIBABLY SI'END MORE TIME WATCHing your speedometer than any other part of your dashboard. However, because most speedometers are mechanical devices and analog in nature, they are prone to error. And just as other parts of your car wear out and must be replaced, so must your speedometer. Besides, the most common speedometer is simply a pointer with a background scale; so exact speed is hard to determine accurately.

Our digital speedometer will accurately display vehicle speed both on a three-digit seven-segment display for precise speed
readings, and on a quick easy-to-read analog bar-graph display. The speedometer can be calibrated to read in miles per hour or in kilometers per hour, whichever is preferred. In addition, the bar-graph's "red line" can be set to any desired speed-probably 55 mph .

Theory of operation

The digital speedometer operates by monitoring the speed of driveshaft rotation (on a rear-wheel-drive vehicle) or one of the transaxle output shatts (on a front-wheel-drive vehicle.) Rotational speed is
monitored by sensing four magnets (that are secured to the driveshaft or output shalt) with a pickup coil that is mounted to the chassis or body of the automobile. As each magnet passes the pickup coil, a pulse is generated and sent to the digital speedometer, which then counts the number of pulses that occur during a preset time interval and converts this number to display the vehicle's actual speed. The pickup coil and magnets are commercial units that are available from many autoparts stores
Because the speedometer uses magnets

FIG. 1-BLOCK DIAGRAM OF THE SPEEDOMETER: The input amplifier conditions the signal from the magnetic pickup for processing by the counting and display circuitry.

FIG. 2-THE INPUT AMPLIFIER AND TIMEBASE circuitry are shown here. OIP switch S1 sets the divide ratio for calibrating the speedometer.
for sensing (just as many aftermarket cruise-control devices do), dirt, moisture, and weather will not affect its operation. Also, because the speedometer is digitally calibrated, it will remain accurate in all conditions ranging from the coldest winter morining to the hottest summer day.

Referring to the block diagram shown in Fig. I. pulses from the magnetic pickup are amplified and shaped by the input circuitry. Because all input pulses may not be the same amplitude (due to different magnet strengths and possible distance variations between the magnets and the pickup coil), input-pulse shaping increases the speedometer's accuracy by eliminating multiple counts, missed counts, or both.

The conditioned input pulses are sent to the counter and then to the digital and analog displays. The counting section counts the number of input pulses for a period of time that is determined by the setting of the programmable timebase.
Let's take an example of how the time-
base is set for a particular vehicle. On most vehicles, the gear ratio in third (or high) gear is 1:1. In other words, driveshaft speed is equal (or very close) to engine spced. On an eight-cylinder engine, the engine is running at approximately 2200 RPM when the vehicle's speed is 60 mph . With 2200 RPM as our driveshaft speed, we know that the inputpulse rate to the speedometer will be 8800 pulses per minute (2200 RPM times four magnets). Dividing that number by 60 gives us our input frequency in Hertz, in this case. 146.66 Hz .

We now determine that the time for one complete pulse cycle is $6.818 \mathrm{~ms}(1 \div$ 146.66 Hz). In order to display 60 mph on our digital readout, we must count 60 of those $6.818-\mathrm{ms}$ pulse cycles. That gives us a timebase of 0.41 seconds ($60 \times$ 6.818 ms), or 2.44 Hz .

The analog display indicates relative speed by converting the input frequency to a voltage that is then processed for
display by the bar-graph display driver IC's (IC8 and IC9).

Circuit description

Referring to Fig. 2, the pickup coil is connected to Pl of the digital speedometer via a twisted-pair cable and a $0 . I^{\prime \prime}$ female Molex connector. One side of the coil assembly is AC coupled to ground through C5 and C6, and the other side is passed on to the input amplifier, which is composed of Q1, Q2, and the associated bias resistors. The pickup coil is biased slightly positive to ensure that Q1 turns on reliably. After buffering by IC3-a, the input signal is ready for processing by the counting section of the speedometer.

The $60-\mathrm{Hz}$ signal is generated by ICl , an MM5369 17-stage programmable oscillator/divider, and its support components. Here, ICl uses a 3.58 MHz colorburst crystal to produce a stable and accurate $60-\mathrm{Hz}$ reference.

The programmable divider uses two
 otherwise noted.
R1-22 megohms
R2-R5,R7,R11-R14,R25,R26,R30, 2- 10,000 ohms
R6,R33-470 ohms
R9-33,000 ohms
R15-R21,R37-220 ohms
R28-22,000 ohms
R31-220,000 ohms
R34-10,000 ohms, vertical trimmer potentiometer
R35-2,200 ohms
R36-22,000 ohms

- $0.01 \mu \mathrm{~F}$ disc

C3-33 pF disc
C4-22 pF disc
C6-4.7 μ F, 15 volts, electrolytic $\mathrm{C} 7-0.001 \mu \mathrm{~F}$ disc

74 Cl 61 synchronous 4-bit counters (IC2 and IC3) to produce a divider that can be programmed to divide hy a factor ranging from 4 to 256 . The division ratio is set via eight-position DIP switch SI. The text box that appears elsewhere in this article indicates how switch positions corre spond with different division ratios.

The output of the programmable divider is fed to two pulse generators consisting of: IC3-c, C8, and R25; and IC5-c, C9, and R26. The pulse generators produce two sequential pulses; a latch pulse followed by a clear pulse. The latch pulse latches the current counter value for display, and the clear pulse resets the $1+553$ counter (IC6, shown in Fig. 3) so that it begins counting from zero for the next sample period.

The heart of the digital display section (shown in Fig. 3) is IC6, an MCl4553 three-digit BCD counter. That IC counts the incoming signal for the duration of the timebase and outputs the value through IC7, a 74 C 48 BCD to 7 -segment decoder, and on to displays DISPI, DISP2, and DISP3. Resistors R15-R2I limit the amount of current that passes through the displays. The three digits are multiplexed hy Q3, Q4, and Q5.

The analog display section (shown in Fig. 4) consists of IClO , an $\mathrm{LM}_{2} 917 \mathrm{~N}$ frequency-to-voltage converter, and its associated components. That IC produces a DC voltage that is proportional to the frequency of the input signal. That relative voltage is then used to drive two cascaded L.M3914 bar-graph display drivers (IC8 and IC9), which, in turn, drive the $20-$ element discrete LED display. The analog display is calibrated simply by setting potentiometer R34.

C8,C9- $0.01 \mu \mathrm{~F}$ disc
C10-0.022 $\mu \mathrm{F}$ mylar
C11-1 $\mu \mathrm{F}, 16$ volts, electrolytic

Semiconductors

IC1-MM5369 17-stage oscillator/divider
IC2.IC4-74C161 synchronous binary ccunter
IC3,IC5-4001 quad NOR gate
IC6-MC14553 three-digit BCD counter
IC7-74C48 BCD to 7 -segment decoder/driver
IC8,IC9-LM3914 dot/bar display driver
IC10-LM2917N frequency-to-voltage converter
D1,D2-1N4004 rectifier diode
D3-1N4001 rectifier diode
Q1,Q2-2N3904 NPN transistor
Q3-Q5-2N3906 PNP transistor
LEC1-LED10-0.125" greeen diffused
LEC 11-LED16-- $0.125^{\prime \prime}$ yeliow diffused
LE[17-LED20-0.125" red diffused
DISP1-DISP3-7-segment commonCathode display (Panasonic LN516RK, D gi-Key P351; P352, P353, \& P354

[^1]

FIG. :-THE DIGITAL DISPLAY section of the circuit uses a 14553 (IC6) to count pulses, and a 74 C 48 (IC7) :o display the count.

FIG. 4-THE ANALOG DISPLAY uses a frequency-to-voltage converter (IC10) to convert the counted pulses into displayable form.

FIG. 5-STUFF THE DISPLAY BOARD as shown here. Don't forget to install the three jumpers. The fiat sides of all LED's should face the row of holes at the bottom of the board.

Construction

Construction of the digital speedometer is nearly identical to that of the digital tachometer presented last month. The circuit is built on two PC boards: a display board and a main board. The two boards are connected by 35 jumpers.

The display board contains the sevensegment readouts, the twenty LED's and several resistors: the main board contains everything else. The display board is sin-gle-sided; the main board is double-sided. The PC boards can be made using the foil patterns shown in PC Service, or they may
be purchased from the supplier mentioned in the Parts List. If you etch your own boards, he sure to solder both sides of the main board.

Begin stuffing the boards with resistors, diodes and other low-protile parts. Refer to Fig. 5 and Fig. 6 for part locations. If you are using IC sockets, which we recommend, install them next. Il you don't use sockets, install the IC's last and solder only a few legs of each IC at a time to prevent overheating. Whether sockets are used or not, observe CMOS handling precautions: use a ground strap, ground your soldering iron, and work only on an anti-static surface.

Continue installing the rest of the parts, including the DIP switch, the capacitors, and the crystal, on the main board. The transistors are installed with the base or center leg hent toward the flat side of the body of the device. Install each transistor about $1 / 4$ inch above the board.

When stufting the display board, hegin by inserting and soldering the three sevensegment displays. And don't forget to install the three jumpers located just below the displays. Then insert the discrete LED's into the board with ten green

FIG. 6-STUFF THE MAIN BOARD as shown here, and, after checking both boards for errors, connect them together with 35 pieces of short bare wire. The solder sides of the board should face each other.

LED`s (LEDl-LEDIO) starting in the lower left corner. Do not solder them in yet. Next insert six yellow LED's and then four red LED's. Double-check to be absolutely certain that the LED's are oriented properly; the cathode (usually the flat side) of the L.ED should face the bottom of the board.

Next, turn the board over and lay it down on a flat surface, being careful not to allow any LED's to fall out. That's accomplishod easily by holding a piece of stiff cardboard against the LED's while turning the board over. Now, to keep the board parallel to your working surface, apply pressure to the board where the sevensegment displays are mounted, and solder one lead of the end and middle LED's. Next, carefully look across the surface that the board is lying on to see whether the LED's are at the same height as the seven-segment displays. If not, correct their positions and then continue soldering one lead each of the remaining LED's.

SWITCH SETTINGS

For a front-wheel-drive vehicle, the transaxle output shaft's speed can be determined from this formula:

$$
\mathrm{DF}=5.355 \cdot \mathrm{R}
$$

where DF is the division factor, and R is the radius of the front wheel. For a rear-wheel-drive vehicle, the driveshaft's speed can be estimated from the engine speed. If you have an overdrive transmission, use the gear ratio found in the owner's manual to convert the engine speed to the driveshaft speed. The output of each programmable divider (IC2 and IC4) can be determined from the chart below. The total division factor provided by the two IC's is the product of the individual DF's provided by each separately.
For example, a $10^{\prime \prime}$ wheel requires a division factor of $5.355 \times 10=53.55$. We could approximate that value by setting IC2 to divide by 5 and IC4 to divide by 10 . To do so, the DIP switch would be set like this: 01001001.

Turn the board over and align the LED's so that they stand up straight and follow a smooth curve. When you're satisfied with their positions, solder the other leg of each LED.

WARNING

Although the speedometer can be mounted above, below, or inside the dashboard, some conditions must be met if the unit is to be installed in place of the original speedometer. First, Federal law prohibits any tampering with the odometer section of the speedometer and imposes harsh penalties on those in violation of that law. That does not mean that a person is forbidden to replace the original speedometer with the digital speedometer presented here. However, if the device is installed, it must be done in a manner that will keep the vehicle's odometer fully operational.

To replace the original speedometer with the digital speedometer, remove the face plate and pointer of the original, making sure that you leave the original gearing and odometer mechanism intact. The digital speedometer can then be installed in the space left by the old face plate and pointer. Also, the original speedometer cable must be left connected; to remove it is also a violation of Federal law. Check your state laws, too, as they may have additional restrictions.

FIG. 7-MAGNET AND PICKUP-COIL MOUNTING METHODS: For a car with a transmission and driveshaft, mount the magnets and pickup coil as shown in a and b, respectively. For a car with frontwheel drive, mount those parts as shown in c and d.

After you have installed and soldered all components, check your work carefully for errors. Fix any errors, and then complete the assembly by connecting the boards. mechanically and electrically, to each other. Mount the boards back to back (foil side to foil side) with \#6 hardware. The boards must ie spaced at least $1 / 4$-inch apart using spacers or standoffs. Keep in mind that the board will be mounted to the dashboard (or custom-built case) by the same bolts that hold the boards together.

After the two boards are mechanically secured to each other, run short pieces of solid bare hook-up wire between corresponding pads on the two boards. Make sure that the wires are straight and do not
touch each other. The boards can be "folded apart" for troubleshooting or repair, if necessary.

Bench testing

The next step is to test the speedometer to ensure that it is completely operational before installing it in an automobile. Apply twelve volts to power connector P2, which is located on the main board. Note that the positive pin is the one closest to five-watt resistor R29. After power is applied, the two right-hand digits should display zeros, and none of the LED's should be lit.

If your displays dilier, check the supply continued on page 82

The

 Barly

 Barly Days of

 RADO

 RADO}

MARTIN CLIFFORD

The radio pioneers discover how to amplify signals.

Part 4the invention of the triode vacuum tube by de Forest opened the floodgates to the design of high-gain circuits. Although the crystal and the vacuum-tube diode were adequate radio signal detectors, neither could amplify; hence, circuit design was sharply circumscribed. But once the experimenters had a device that could amplify, there was almost nothing the early pioneers could not and did not try.

Tube design

Some early tube designs were "off the wall": some because they were attempts to bypass de Forest's patent; others because their designers thought they had invented devices with better performance. One of those unusual designs - now practically unknown-was the "horned triode" (Fig. 1), a tube in which the plate-

and control-grid leads were brought out at the top. The idea didn't take hold for receiving tubes, because it had no practical reason to justify its existence: but a variation subsequently became adopted for transmitting tubes. Ultimately, tube design went on a four-pin base, although there were commonly used tube types having a base with five and six pins.

Early radio tubes such as the WD-II, UX-199, UX-120, UX 201A. and the UX-200A had a filament made from a mixture of tungsten and thorium, which was, in turn, coated with metallic thorium. Tungsten was used because of its ability to withstand high temperatures: thorium was used because it is a prolific source of electrons. When electron emission became low, the filament could be reactivated by simply raising the filament voltage to increase the filament temperature, thereby "boiling off" the oxidation products that were interfering with releasc of the electrons. Generally. the voltage was raised $200-300 \%$ for 10 to 15 seconds. For users without the necessary
equipment to adjust the filament voltage (see Fig. 2), a "filament renewal service" was available in radio stores for a nominal charge of 25 cents per tube.

If the tungsten/thorium filament was good, something else must be better, so the search for a "better filament" was something like the search for the Holy Grail. Just about everything was tried, including various alloys of platinum, pure nickel, and alloys of nickel such as chromium nickel and titanium nickel. Barium and strontium carbonates in oxide form were also used as the electron source; but. unlike oxide-coated filaments. they could not be reactivated

Soft and hard tubes

Any trace of air remaining in a tube following its manufacture resulted in a higher plate current that usually could not be controlled by the grid, which resulted in erratic operation. Typically, an electric light bulb had an internal gas pressure of 150 millionths of atmospheric pressure (which is $14.7 \mathrm{lbs} /$ square inch at sea

Make your home into something special!
 That's exactly what your home will
 7. Transform your

be when you fill it with HeathLit electronic products-products that make your life easier and more enjoyable. Within our diverse line are kit and assembled products sure to enhance each room in your home.

1. Make your entryway more secure and easy to use with the Keyless Doorlock. You'll never again be locked out because of lost or forgotten keys. All it takes is a simple fingertip entry of a four-digit code, and the Keyless Doorlock unlocks your door.

2. Add a new dimension to your living room with your own Comput

Station. This Digital Weather Station displays up-to-the-minute tempe-ature, wind, and barometric pressure readings, along with time and date.
3. Give your kitchen a unique blend of style and efficiency with our
 easy-to-build kit keeps time with quartz-crystal accuracy. Anc with its simulated oak wooc-grain finish cabinet, you'll have a timepizce tr at fits into almost any decor.

4. Put your den to greater use with this IBM PC AT Ccmpatible Computer. Do word processing, personal accounting and more when you run exciting IBM-compatible sofware on your fast and powerful HS-241. And you can build it yourself in just a few nours.
5. Bring the latest in digital technology to your bathroom. This Digital Scale lets you closely monitor your weight with e ectranic precision. And, it's battery qperated so it's safe to use right out of the shower.
6. Add a video entertainment center to your bedroom. Our 19"-diagonal stereo TV kit gives you
 an extra-sharp colorcorrected picture with full stereosound, and convenient viewing that you can control from your bed. Comes in a si nulated walnut cabinet that complements your room.
rec room into a haven for hobby fun. Put our Deluxe QRP CW Transceiver in this room and en joy superb HAM radio operation that excells in performance and features. It offers expandable transmission and reception capabilities.

8. Give your workbench a touch of professionalism with this oscilloscope. Whether you're a service technician or a hobbyist, you'll love the wide range of measurement capability our laboratory-grade Dual Trace 10 MHz Oscilloscope gives you
9. Add practicality to the utility room and save money, too. Avoid expensive food spoi-age with our Freezer Alarm that
warns you when the inside temperature of your freezer rises too high. Prevent water damage with our Food Alarm that warns you of water that's where it shouldn't be.

10. Make your coming and going easier than ever. Your garage door will open with incredible ease and dependability with our Deluxe Garage Door Opener. Easy to install, this opener is durable and includes a handy security light.
You'll find fun and excitement with every Heathkit product. Whether they're in kit form or already assembled, our products will help you enjoy your home more thall you ever dreamed possible.

FIG. 1-THE HORNED TRIODE had the plate (anode A) and grid (G) leads at the top of the tube. The base had four pins, but only two were used for the filament (F).

FIG. 2-AN ADJUSTABLE VOLTAGE was often used to reactivate tubes having thoriated tungsten filaments.
level), but that was much too high for radio tubes, whose gas pressure could be made as low as 2 or 3 millionths of atmospheric pressure. One way of ensuring the least possible air following evacuation of the tube was to "flasto" a chemical inside the tube. That was done by including a tiny satucer-like structure that contained a chemical such as magnesium, calcium. strontium, barium, or mercury. A current-carrying coil surrounding the tube ignited the chemical and the "Hash" depleted any oxygen remaining in the tube. The result of the process was the deposition of a silvery substance on the interior surface of the tube.

The presence in a tube of even a trace of oxygen resulted in collisions between the biament-to-plate current and the air molecules, therehy iomizing the gas atoms. As
a result, the ions, having lost one or more electrons, were positively-charged and migrated toward the tilament. Because of their relatively large structure (compared to electrons), the ionic bombardment was able to destroy sections of the filament. Tubes that contained oxygen displayed a Hichering blue glow toward the bottom end of the glass bulb and were called "soft." A "hard" tube, on the other hand, was one that produced no glow, thereby indicating litte internal air.

Microphonics

As tubes were made smaller, the internal pins that supported the various clements were so small they didn't provide adequate support, so the elements were more susceptible to vibration. Element vibration resulted in microphonics, whose chief characteristic was a variation in sound volume that was sometimes accompanied by howling. The problem was relieved somewhat by putting lead weights on top of the tube to give it greater mass, and thereby reduce vibration. Subsequently, the lead-weight technique was also applied to larger tubes that had microphonic tendencies.

A riot of color

The 1920 's was the age of the experimeter. Although most people purchased complete ready-to-operate radios,
many purchased parts and assembled their own radios, using circuits they designed or tweaked. Aesthetic beauty was often an important aspect of circuit-design and assembly, so it wasn't unusual to lind that the wiring used in early radios was covered with "spaghetti," a varnished cambric insulation that was available in most of the colors of the rainbow. The innards of many an carly radio were a riot of color-and beauty.

Early experimenter receivers were actually built on a breadboard, and so was at least one commercial receiver: the fivetube Atwater Kent Model 10. Although cabinets were available to experimenters, many breadboard receivers were left open to solicit the oh's and ah's of friends and neighbors. It's on record that one builder, who wanted both protection for the for the receiver and neighborly acclaim, used sheets of glass for both the front pancl and the cabinet so that the radio could be used even while it was on display.

Circuit diagrams

Like the radio itself. circuit diagrams have gone through many changes. Early builders made use of pictorial diagrams, such as the one shown in Fig. 3, to show how the equipment was assembled. In some instances the diagram was a combination of a pictorial and a schematic circuit, as in Fig. 4

FIG. 3-PICTORIAL DIAGRAMS WERE often used instead of schematics to show the working of radio circuits.

FIG. 4-SOMETIMES, A CIRCUIT was described by using both pictorials and component symbois in the same schematic.

FIG. 5-STEPS IN THE DEVELOPMENT of the circuit symbol for headphones. Originally, the vertical bar identified by the letter T represented a telephone receiver.

FIG. 6-THIS IS HOW THE FLEMING diode was used in early receivers.

The symbols used in drawings and schematics also evolved along with the components and circuits they represented. Figure 5 shows how the simple symbol representing a headphone developed over the years. In Fig. 5-a, an original schematic from the early days of radio, the headphone is represented by a vertical bar followed by the letter T; the T being used to indicate that the bar represented a telephone receiver. The bar eventually evolved into the single headphone symbol shown in Fig. 5-b, which in turn evolved into the symbol shown in Fig. 5-c, the one used today to represent a headphone having two receivers

Early circuits

The first use of the vacuum tube was as a detector. Figure 6 shows a common (for its time) receiver that used a Fleming diode instead of a crystal for the detector. As you can see, except for the tuhe the circuit is essentially the same as that of a conventional crystal receiver. The rheostat in the filament circuit was used as a way to apply higher-than-normal filament voltage, which was an early attempt to increase plate current, and therefore, the output volume. (It also shortened the life of the filament.)

De Forest's triode was initially regarded strictly as an amplifier. Early experimenters were not aware that it could be used as a detector/amplifier, so one early circuit used the crystal as a detector, followed by the triode as an audio amplifier (Fig. 7). In time, experimenters learned that the triode could be used as a detector/amplifier, which eliminated the need for a separate detector. Initially, it was known that the control grid of the triode needed bias. a fact that was brought home when the action of an unbiased grid blocked plate current flow. Initially, grid bias was provided by batteries, which were labeled C to indicate they were used for biasing the grid. Although a C battery could last its entire shelf life, since they often were not replaced until their acid had oozed out and damaged the radio, experimenters searched for a better way to hias

FIG. 7-AN EARLY CRYSTAL SET having one stage of audio amplification. Subsequently, it was realized that the tube could be used as a detector as well as an amplifier.

FIG. 8-SEVERAL METHODS WERE USED to feed a signal into a triode. Note that in b and c the grid is floating
the grid. The better way was a large resistor connected from grid to groundcalled a grid leak-that was usually shumted directly or indirectly by a capacitor (that stored the voltage developed across the grid leak).

As shown in Fig. 8. various techniques for getting extra oomph from the triode were tried. It was learned early that the best triode circuit was the one shown in Fig. 8-a. wherein the input signal (E_{s}) is injected between the control grid and the filament. Some attempts were made to put the signal across the filament (Fig. 8-h), or between the plate and the filament as shown in Fig. 8-c.

Although it offered superior performance, it took a number of years for the triode vacuum tube to replace the crystal detector because crystals were considerably less expensive than tubes and required no power source other than that supplied by the signal itself. Also, in many areas radio signals could supply satisfactory reception using a crystal detector, there was no need for additional sensitivity (amplification).

In lact, the primary concern with early radio reception was not sensitivity but selectivity. In the next installment of this series, we 'll look at ways that selectivity was increased and at some audio-coupling schemes that were used.

R-E

TV SIGNAL DESCRAMBLING

This month we digitally encode the sound.

WILLIAM SHEETS and RUDOLF F. GRAF

Part 9in pretivisous pakts or this series. we dis. cussed encryption of audio signals using anl analog method. Basically, all that wats done was to remove the audio from the main chamel and place it on a subcarrien Since the subcarrier. by itself, is inaudible, the audio could not be heard by casual or unauthorized listeners. The recovery of the audio program was accomplished by demodulation of the subcarrier:

Although subcarrier-based scrambling techniques are fairly effective, they are relatively easy to defeat: they are suitable primarily for low-to-moderate security applications. A more secure encryption system that uses digital encoding (the Oak Orion and MA/-Com Videocipher II) has been developed for satellite audio systems

In the Orion/Videocipher // kind of encoding. a digital representation of the audio signal is substituted for the TV signals horizontal sync pulse, which is located within the horizontal blanking interval. Figure I shows how the substitution is made. Since the audio is moved to the horizontal blanking interval, the TV signal's aural (sound) carrier has no program modulation. It can be left unmodulated, or modulated by sound having no relation to the TV picture-perhaps nusic or "billboard" announcements. Naturally, to hear the program sound, the digitized audio must be restored to an analog signal.

There are several way by which conventional audio signals can be digitized (converted to digital form). The best approach for a given situation depends on the signal frequency accuracy required, and cost considerations. We will discuss several approaches to A / D and D / A conversion.
First, a word about basic digitizing theory. Analog signals are digitized by taking minute discrete samples of the analog

FIG.1-DIGITIZED AUDIO IS SUBSTITUTED for the video signal's horizontal sync pulse. Only the first two data words represent audio. The third is used for housekeeping.
waveform. Digital sampling theory tells us that a signal of length T and a frequency bandwidth of f_{m} can be completely specified by $2 \times f_{m} \mathrm{~T}$ samples of the signal. (In this instance, "completely specified" means that the analog signal can be digitized and then restored to back to ana\log with essentially no distortion.)

Alternately, it may be said that if $\mathrm{T}=\mathrm{I}$ second. then $2 \times f_{m}$ (or twice the bandwidth samples per second) are required to specify the signal; which means that a typical TV-audio signal having a $12-\mathrm{kHz}$ bandwidth must be sampled at a $24-\mathrm{kHz}$ rate (or higher) in order to completely specify the signal. (Because "it's already available," a convenient audio sampling rate is twice the horizontal scan frequency, or 31.5 kHz .) Why sample at at rate higher than necessary? Because sampling at the highest possible rate reduces aliasing distortion, thereby reducing the antialiasing filtering requirements.

Aliasing products

Aliasing distortion is the production of spurious waveforms caused by too low a sampling rate. The distortion appears as unwanted and unrelated very-low-frequency or in-band signals. For example, in an audio application, the baseband signal may be in the $0-12 \mathrm{kHz}$ range and would theoretically be sampled at a 24 kHz rate. However, because of distortion within the audio amplifiers, some audio

FIG.2-ALIASING IS THE PRODUCTION of false, unwantec signals caused by too low a sampling rate.

FIG. 3-A COMPARATOR can be used to digitize an analog signal at TTL levels.
components as high as 24 or 30 kHz might be present, and they would also be sampled during the digitizing process. Figure 2 shows what might occur. The top waveform (Fig. 2-a) represents audio frequencies above 12 kH . caused by distortion within the analog audio amplifiers. The sampling pulses (Fig. 2-b) are obviously not twice the frequency of Fig. $2-\mathrm{a}$, so they produce the unwanted sampling pulses shown in Fig. 2-c: After normal filtering, we get the unwanted reconstructed waveform-caused by aliasing distortion-shown in Fig. 2- d : a distorted waveform of very low frequency having no relation to the original analog audio signal. Aliasing can be reduced by adequate audio-bandwidth limiting, and by using as high a sampling rate as possible.

Binary numbers

Typically, the audio is digitized by gen-
erating discrete binary numbers to represent the analog level. If we have a binary word n bits long, we can specify 2^{n} discrete levels. Obviously, it is necessary to specify a large number of samples to reproduce minute changes in analog level. One hundred levels would take care of 1% $(-40 \mathrm{~dB})$ uncertainty, meaning a 40 dB dynamic range. And if 256 levels were used, uncertainty would now be less than -46 dB , which is adequate for TV audio. A single data byte can do that.

However, since we only have horizontal blanking pulses at a 15.75 kHz rate, how can a 31.5 kHz sampling rate be produced'? Simply by having each blanking interval contain two bytes rather than one byte. In this way, 31,500 bytes-per-second are available, which is adequate for a 12 kHz audio baseband. In addition, a third byte is inserted in the blanking interval: It is a coded digital word that can be used to
determine where the horizontal and vertical starting points are located (to ensure proper vertical and horizontal timing). It can also be used for other purposes; for example, to obtain two 12-bit audio samples (total 24 bits).

Figure 3 shows how an audio signal can be digitized. The output from the audio amplifier is level-set for proper dynamic range, and then sampled every 31.2 mi croseconds (31.5 kHz rate). The analog value is stored in a sample-and-hold circuit until the next sample is taken; let us assume it may be any value between zero and ten volts. That analog level is then fed to one input of a comparator. The other comparator input is fed with a linear ramp (sawtooth) whose amplitude rises from 0 to 10 volts. (The ramp starts slightly after the sampling interval and ends just belore the next audio sample is taken, because some time must be reserved for sampling and resetting the ramp to zero.) If the audio sample is relatively large (say 7 to 10 volts) in amplitude, the ramp will have to rise to that value before the comparator's output voltage will drop to zero. If the analog sample is small (say I volt), the comparator will drop to zero when the ramp exceeds one volt. (The comparator's output is a logic high (1) when $V_{S}>V_{R}$, it is a logic low (0) when $\mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{R}}$. Therefore, the comparator output is a train of pulses having a frequency of 31.5 kHz and a pulse width ranging from nearly zero to 30 microseconds (depending on the sample amplitude.)

The variable-length pulse represents the analog value of the audio sample's amplitude. A narrow (5 microsecond) pulse represents low values (say 0 to 2 volts). A wide pulse of 25 microseconds would represent 8 or 9 volts. (Ideally, we should get about 3 microseconds pulsewidth per volt in this instance.) Next, the pulse has to be converted to a binary value, which can be done by using the pulse as a gating pulse for a counter that is clocked by a much higher clock frequency. If we had a $4-\mathrm{MHz}$ clock, 120 clock pulses would be counted in 30 microseconds. By using two separate (alternating) systems and the full line-scan time (63.5 microseconds), it is possible to count up to 240 clock pulses, therefore generating a full 8 -byte binary word. That is possible because each byte is only needed every 63.5 microseconds, and there are two bytes.

Therefore, the counter can be reset to zero, the high-frequency clock signal can be gated by the variable-length pulse, and the width of the variable-length pulse will determine how many cycles of the highfrequency clock will be input to the counter. The counter will count to a state that is proportional to the length of the variable pulse, whose width depends on the analog

FIG. 4-SHIFT REGISTERS CAN BE USED to organize three digital samples into a serial data stream.

FIG. 5-THIS IS THE FUNCTIONAL circuit of a successive-approximation register-type A/D converter.
value of the audio sample. Therefore a binary number appears at the output of the comnter that is proportional to the analog value of the audio sample and is its digital equivalent in parallel format.

Next, as shown in Fig. 4. the binary number-which we'll call Sample I. is stored in parallel format in a shift register. During the horizontal blanking interval. it is clocked out in serial format, appearing as an 8-bit digital word. The clock frequency of 4.0909 MHz shown in Fig. 4 has a 6 -microsecond interval. which permits $2+$ bits (3 bytes) of digital information to be transmitted during the sync pulse. By using two additional shift registers, as shown, it's possible to seriallytransmit three bytes. The first two bytes. Sample 1 and Sample 2, are generated because we need 31.500 samples per sec-ond-we must transmit two hytes in every blanking interval, and there are 15,750 blanking intervals per second. The third byte can be used for system housckceping or overhead. As previously mentioned, it can represent signals for determining horizontal and vertical sync references. and have special-purpose coding.

Because the audio is both digitized and piggybacked on the sync interval, it is no longer found on the TV signal's sound carrier. In lact, the sound carrier can be dispensed with, as done by Videocipher $1 /$. Or, the sound carrier can be put to other use; for example. it could be used for "barker" audio.

Approximation

Another approach to audio A/D conversion is the successive-approximation register shown in Fig. 5. There, a clock is used to drive a register connected through a digital-to-analog converter, which is part of a feedback loop around the opamp. In a sense the op-amp is used as a comparator, but the register and D-A converter may be thought of as an integrator. In that circuit a DC level (a steady logic level) will cause the register to produce a successively increasing binary count, since the DC level is merely "gating" the clock signal. As the register is counting, the D / A converter produces a rising ramp output. When the D/A conventer's ramp output voltage is equal to that of the anat log input to the op-amp the output of the op-amp will fip low, thereby shutting off the clock gate. (At that point, the binary number seen at the register's input or the D/A converter input is the digital equivalent, in parallel form, of the analog input signal. That signal can be stored in a latch or another register for later use.)

The speed of conversion of the suc-cessive-approximation system depends on the clock frequency, the bandwidth of the operational amplitier, and the system's stability. Nomally, the clock frepuency must be much higher than the input signal freguency. For example, if a 256 -level (8 bit) resolution is wanted, the clock must be 256 times faster than the analog sampling rate. Actually, it must be even greater to allow for setup times, latching, and sampling of digital-data output to the bus

FIG. 6-IN AN A/D "FLASH" CONVERTER, a comparator's output goes high when the video voltage is greater than that of the associated reference divider tap-off.
interface
The A/D conversion systems shown in Figs. 4 and 5 are eflective at low to moderate frequencies. such as those used for audio. They are not suitable for the higher frequencies that make up the video signal. One of the most effective A / D video converters is the "flash" converter shown in Fig. 6. It is simply a collection of high slew-rate wideband op-amp comparators that use independent reference voltages. with the video signal common to all comparators. The reference voltages are derived from a resistive voltage divider.

Each of the 250 steps that make up a data byte requires its own comparator, so a practical circuit would require LSI technology. The "flash" comparator's output feeds encoding logic that provides 8 -bit binary data corresponding to the analog value of the video signal sample

Bear in mind that regardless of the kind of digitizing used for video. a bandwidth of 4.2 MHz is required for NTSC video, and digitized video is processed either a line or a frame at a time. Gencrally, eight bits or more must be used to describe the signals adequately and to avoid visible deterioration of the picture. That corresponds to 256 levels (0 to 255). each step being 48 dB below peak video. Since the sample rate must be at least 2×4.2, or $8 .+\mathrm{MHz}$. more likely 10 MHz would be used so there would be a small amount of lecway. To allow for glitches and pulsesettling time. and to reduce aliasing, bandw idths of 20 MHz are necessary.

FIG. 7-A COMPLETE DIGITAL DECODER. The analog output from the lowpass filter is an accurate reproduction of the original audio signal.

FIG. 8-A SINGLE OP-AMP and a precision voltage divider can also be used for digital decoding. The analog output is proportional to the active data inputs.

Descrambling

To demodulate digitized audio, the digitizing process is simply reversed. Figure 7 shows the block diagran of a syncinterval digital-audio decoder. A dataseparator gate following the TV's video detector extracts the audio-data pulses
from the video signal. The output from the separator is a syarewave containing unwanted components, among them possi bly video "spill," and a $15-\mathrm{Hz}$ sinewave that is used to prevent the the accidental use of the digital data as TV synchronizing pulses. All extraneous signals, re-

Sample, another the second sample, and the remaining register contains the encoded third bytc. The third byte is fed to a pattern-recognition system that specifically interprets the encoling of the third byte.

Byte 1 and byte 2 are fed in parallel form to a data selector that is driven by a $31.5-\mathrm{kHz}$ clock. which is derived from the horizontal-synic circuit. Bytes I and 2 are alternately selected and fed in parallel form io a D/A converter. which converts the audio data back to analog form. The filter, which we'll get to shortly, completes the restoration process by "smoothing" the analog waveform.

Figure 8 shows how an op-amp and a resistor network create an elementary D / A converter. Resistor R_{1} is the feelback re sistor from the op-amp's output to its inverting inpul. Using a $\pm 15-$ VDC supply and TTL signal levels, values for R_{F} and R might be 10 K and 5 K respectively.

The converter works this way: Assume that data-input D_{7} is the most-significant data bit, having 128 times the effect on the output compared to D_{0}, which is the leastsignificant bit. And assuming that R_{F} is 10 K and that R is 5 K . If D , is high and all other data lines are low, we would get 10 volts out ol the D/A converter. If D_{7} were low and D6 were high. the D/A output would be 5 volts. A high D_{5} would produce 2.5 volts; a high D_{4} would produce 1.25 volts, and so on, until D_{0}, which would produce $5 / 64$ volis. Note that each data line produces twice the effect of its lower neighbor. Any binary number would therefore produce a definite analog voltage.

As shown in Fig. 9, duc to the sampling process the output of a D / \wedge converter used for decoding is an analog signal having a 31.5 kHz component. The lowpass filter, (also shown in Fig. 7) removes the 31.5 kHz component, thereby producing a low-

FIG. 9-A RESTORED WAVEFORM contains a 31.5 kHz sampling-frequency ripple that must be removed by a lowpass filter
garelless of type, are removed by the filter/ amplifier so that only the digital data appears at the input to the level converter.

The level converter makes the data signal TTL compatible (or whatever is necessary for the logic circuitry that follows). The compatible data is clocked into a $24-$ bit shitt register, which can easily be made up of three 8 -bit shift registers, as shown. One shift register contains the first audio
distortion waveform that closely resembles the input signal.

Not really scrambled

Although we have been referring to "scrambled" audio, as you can see by now. the audio signal itself is not really scrambled, it is simply digitized. But since it cannot be received by a con-

VIDEO TAPE COPY
 PROTECTION GOT YOU DOWN?

STABILIZE YOUR PICTURE WITH THE NEW, IMPROVED LINE ZAPPER

Bothered by brightness changes, vertical jumping and jittering, and video noise? Tired of renting or buying tapes and being forced to watch an unstable washed out picture? Solve your problems with the Line Zapper

The Line Zapper accepts direct video from any VCR and monitors the signal, line by video line. When it sees the copy protection signal it Zaps it. giving you a normal. clean signal at the output.
Available in both kit form and fully assembled. The kit is only $\$ 69.95$ (Not recommended for the beginner) plus $\$ 3.00$ shipping. Assembled, tested units with a 90 day warranty are only $\$ 124.95$ plus $\$ 3.00$ shipping.
Arizona residents must add 6.7% sales tax. Please allow 6 to 8 weeks for delivery. Dealer inquiries welcome

ELEPHANT ELECTRONICS INC.

BOX 41865-F
PHOENIX, AZ 85080 (602) 581-1973

CIRCLE 120 ON FREE INFORMATION CARD

Learn at home in spare time. No previous experience needed.

E IIITI曽
No costly school. No commuting to class The Original Home-Study course prepares you for the "FCC Commercial Radiotelephone License". This valuable license is your "ticket" to thousands of exciting jobs in Communications, Radio-TV, Microwave. Computers. Radar. Avonics and more! You don't need a college degree to qualify. but you do need an FCC License.
No Need to Quit Your Job or Go To School This proven course is easy, fast and low cost! GUARANTEED PASS - You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY!

[^2] exprience needed

INTERESTED IN SCRAMBLING?

Bob Cooper's CSD Magazine maintains a 24 hour per day Scramble-Fax-Hotline telephone service (305/7710575) which you may call to obtain a 3minute recorded update on the latest happenings in the satellite scrambling world Scramble-Fax Newsletter is also published to keep you abreast of the latest events in descrambling, including sources for descrambling chips and equipment. For information, write Scramble Fax, P.O. Box 100858 , Ft. Lauderdale, FL. 33310 or telephone 305-771-0505.

If you have a dish of your own, tune in the Caribbean Super Station (Western 5 , transponder 23) Tuesdays at 7 PM eastern for a special weekly Bob Cooper report. Also tune-in Boresight at 9 PM Thursday nights (Spacenet 1, transponder 9) for a weekly one-hour report on the activities in the home TVRO field.

Our present 525-line, NTSC color system grew out of a proprietary RCA black-and-white system and was, for all intents and purposes, adopted in 1939. Back then, that represented the highest resolution that was technologically possible. Now, however, almost 50 years later, High Definition TV (HDTV) with more than 1,000 scan lines per frame at last has become very practical.

But what do you do with all the millions of 525 -line TV sets currently in place? The FCC has a plan: They would like to allow existing TV broadcasters to operate in the Ku band using high definition (1,125-line, 5×3 aspect-ratio) video; the broadcasters would continue to operate their existing VHF or UHF local stations simultaneously. Using spot-beam techniques at Ku or even Ka frequencies, the satellite footprint could be shaped to more or less duplicate a broadcaster's terrestrial-signal coverage area.

Japanese HDTV

The lapanese will launch 1,125line high-definition TV service using Ku-band satellites in 1990. The double-bandwidth transponders required for HDTV will transmit their signals to an entirely new generation of TV receivers designed to process the signals. The audio will be digital, stereo, and capable of supporting multiple languages and even closed captioning in the same transmission. The aspect ratio or width of the pictures will be enlarged from the present 4×3 format (see Fig. 1-a) to 5×7 (see Fig. 1-b).

This past lanuary, Japanese scientists conducted a public dem-
onstration in the U.S. Using a special side-by-side allocation, approved for the occasion by the FCC, two UHF channels were used to allow the lapanese to demonstrate their high-definition video. The demonstration was widely applauded by the National Association of Broadcasters (NAB), which represents U.S. broadcasting interests before the FCC and Congress. It's now clear that the NAB, and apparently the FCC, both are in favor of allowing wideband, high-definition transmission to develop here as well.

Because our present VHF- and UHF-TV spectrum is filled, and because high-definition video requires twice the bandwidth of present NTSC video, the only logical home for HDTV is on microwave frequencies using direct satellite transmission. But who is to own and operate such a system?

Turning it over to the broadcasters is one way to allay their worries that a superior technology might erode the value of their licenses. In late 1986, a VHF television station in New York City sold

for more than the cost of buying and launching more than three 24channel C-band satellites!

Best laid plans

All of that flies contrary to the present on-record plans for Kuband DBS. Under the original FCC plan, DBS was to be a separate service allowing programmers to
provide a sort of wireless cable But with the entry of HDTV, the best-laid plans for DBS seemed to be headed out the window.

High-definition TV requires twice the bandwidth per transponder as DBS, and it has a readymade user list that includes all of the existing TV broadcasters in the U.S. That seems to exclude any other use for Ku or Ka frequencies. In fact, it will take some very careful allocation planning to ensure that all of the broadcasters who might like access to the service will receive it. But through frequency re-use techniques, transponder assignments can be repeated often enough to allow each terrestrial broadcaster a viewing area that's essentially the same as the one it now serves.

That sort of change in television service will have profound and long-lasting impact on everything related to television in North America. After 50 years of NTSC as our standard, there is serious energy now being devoted to updating the system and to adapting it to the improved techniques. R-E

ACHIEVE INSTANT SUPERTECH STATUS

THE PATENTED (pending) EDS-59C SEMIANALYZER ${ }^{\circledR}$ WILL CUT YOUR TROUBLESHOOTING TIME DRAMATICALLY—GUARANTEED!*

CHECKS CONDITION, POLARITY, AND NUMBER OF JUNCTIONS OF SEMICONDUCTORS IN CIRCUIT.
DISPLAYS PARAMETERS IN PLAIN ENGLISH ON BRIGHT LED DISPLAY.

BEEPS DIFFERENT TONES FOR IMPORTANT CIRCUIT CONDITIONS.

CHECKS ZENER DIODES IN-CIRCUIT.
CHECKS CAPACITORS FOR LEAKAGE AND VOLTAGE BREAKDOWN.

BUILT-IN AMPLIFIER FINDS NOISY OR INTERMITTANT COMPONENTS.

TWO-YEAR LIMITED WARRANTY ON PARTS AND LABOR.

MADE IN THE U.S.A.

[^3]ELECTRONIC DESIGN SPECIALISTS, INC.
P.O. Box 9609, Coral Springs, FL 33065 VISA/MASTER CARD ORDER LINE TOLL-FREE 1-800-544-4150

Florida 305-726-7416

R-E Computer Admart

Rates: Ads are $21 / 4^{\prime \prime} \times 27 / 8^{\prime \prime}$. One insertion $\$ 825$. Six insertions $\$ 800$ each. Twelve insertions $\$ 775$. each. Closing date same as regular rate card. Send order with remittance to Computer Admart, Radio Electronics Magazine, 500-B Bi-County Blvd., Farmingdale, NY 11735. Direct telephone inquiries to Arline Fishman, area code-516-293-3000. Only 100\% Computer ads are accepted for this Admart.
\qquad (918) 267-4961

CIRCLE 61 ON FREE INFORMATION CARD

DO YOU REPAIR COMPUTERS?

(or want to?)

Your one-stop source for computer repair products: trouble-shooting guides test equipment \& tools diagnostic programs computer repair courses schematics \& much more
Computing Technology
247 Balsam St. Ridgecrest, CA 93555
(619) 375-5744

CIRCLE 198 ON FREE INFORMATION CARD

COMPUTER ASSEMBLY MANUALS

Eliminate Guesswork!

Build with Confidence!
BIG BLUE SEED for IBM ${ }^{\text {™ BUILDERS }}$ Parts list, placement diagrams \& instructions for assembling over 75 IBM-compatible bare cards. Latest version includes guides for 640 K , Turbo, \& AT MthBds. $\$ 17.95$
APPLE SEED $I I$ for APPLE ${ }^{\text {/ }}$ BUILDERS Instructions for assembling over 85 Applecompatible bare cards including $11+$ \& Ile MthBds. For all Apple enthusiasts \$14.95 Both for $\$ 30.00$! Also bare cards in stock!

Check/money-order, VISA/MasterCard to:
NuScope Associates*, Dept RE P.O. Box 790 - Lewiston, NY • 14092

CIRCLE 196 ON FREE INFORMATION CARD

NEWWORD-the better word

This fine word processor can be considered a clone of the popular WordStar program and it even uses the same commands. However, NewWord is faster, easy to customize, has the mail merge feature built-in, supports more printers, has an UNDELETE function and excellent documentation. It also includes the WORD Plus spelling checker by Oasis - an excellent product in itself! We offer this package at a discount. Just check the prices below

Available in most computer formats including Heath hard sector

$$
30 \text { Day Money-Back Guarantee! }
$$

CPIM 80

$\$ 115$
PCDOS, Z100, CP/M 86
\$269
Add $\$ 4$ per order for shipping and handling. Terms: Check or Money Order - VISAIMC - COD. California residents add 6\% tax.

ANAPRO
 805/688-0826
 213 Teri Sue Lane Buellton, CA 93427

CIRCLE 202 ON FREE INFORMATION CARD

CIRCLE 199 ON FREE INFORMATION CARD

CALL NOW
 AND RESERVE YOUR SPACE

- $6 \times$ rate $\$ 800.00$ per each insertion.
- Reaches 239,312 readers
- Fast reader service cycle
- Short lead time for the placement of ads.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materiais to Computer Admart, RADIO-ELECTRONICS, 500 -B Bi-County BIvd.. Farmingdale, NY 11735.

-

SWITCH!

- SWITCHI Connects two Parallal printers to $18 \mathrm{M} \cdot \mathrm{PC} / \mathrm{XT} / \mathrm{AT}$
- SWITCHI comes with all cobles
r SWITCHI lets you torget the bulky boxes.
Price: Only $\$ 59.00$ (Part No 1/2C/O (Ca residents add 6.5% Shipping/Handing (USA) odd $s 4$ on all orders. Item subiect to ovallabily ord out notice. Sens check or money order. and printers:
\qquad 6925 Rosemeod BIVd,
San Gobriel CA 91775 (818) $285-3121$ - (818) 789-4570
(812

CIRCLE 201 ON FREE INFORMATION CARD

Compunan ickil

A NEW KIND OF MAGAZINE FOR ELECTRONICS PROFESSIONALS

KEYBOARDS, KGYBOARDS AND KGYBOARDS!

The man-machine interface

IBM's Personal System/2

F-ollowing months of speculation and rumor, IBM has finally released a quartet of new computers, a new version of DOS, and a slew of new peripherals, including an optical disk drive.
It's immediately apparent that the new computers are intended to open new directions for IBM, as well as to maintain continuity with past machines. And it doesn't seem that IBM has made the kind of marketing blunder it did with the PC JR and the PC Portable

There are four new Personal System/2 computers, as shown in Fig. 1 ; they're dubbed the Models 30,50,60, and 80, and base models of each list for $\$ 1695, \$ 3595$, $\$ 5295$, and $\$ 6995$, respectively. As you can see, the Models 30 and 50 are desktop models, and the others are floor-standing.

The Model 30 is basically an upgraded PC (or XT); the Models 50 and 60 are
basically upgraded versions of the AT; and the Model 80 is IBM's long-awaited 386 machine. The Model 30 has been rated to run about twice as fast as the PC, and the Models 50 and 60 (which differ mainly in the number of expansion slots each contains), twice as fast as the AT. The Model 80 is rated twice as fast the Models 50 and 60. Specifications are summarized in Table 1.

New features

Technical details are hard to come by at this early date, but here's what we've learned so far. (We hope to have a hands-on review next month.) The main features that distintuish the Personal System/2 computers from the old models are the new disk drives, the new video hardware, the new expansion slots, and the new unreleased operating system called Operating System/2 (OS/2).
All the new models come with $31 / 2^{\prime \prime}$ disk drives. Each Model 30 disk holds 720 K (twice that of a standard $51 / 4$ inch disk); new disks for the other machines hold 1.44

FIG. 1
megabytes each, and the Model 50, 60, and 80 disk drives can read both types of disks. The 720K disks are used in many portables currently on the market.

The new video hardware is compatible with the old CGA standard, but it also adds several new modes that are incompatible with all other standards, including IBM's own EGA as well as the Hercules standards. The new video modes offer higher resolution and more colors than the CGA and they require new analog monitors that are incompatible with all other IBM-compatible monitors currently on the market.

The Models 30 and 50 have three expansion slots each; the Models 60 and 80 have seven slots. The slots in the Model 30 are electrically compatible with the old-style slots, but expansion slots shouldn't be necessary because the Model 30 includes most common add-on hardware: 640 K of RAM, a video adapter, serial and parallet ports, mouse adapter, and a batterybacked clock/calendar. The expansion slots in the other models are totally incompatible with the old-style slots, but the new bus, which IBM calis the Micro Channel, can operate at a much higher speed than the old bus. The Models 50 and 60 have 16-bit buses; the Model 80 has a 32 -bit bus.

DOS and OS/2

There is a new version of $\operatorname{DOS}(D O S ~ 3.3)$ and a totally new operating system, which won't be released before the end of the year. DOS 3.3 has a few added commands (including a CALL statement for use in batch files), and has enhanced some old programs (BACKUP and RESTORE, for example), but all in all the new DOS does very little more than provide support for the new hardware. It runs on all past and present IBM PC's.

The other new operating system is called Operating System/2, and it contains many of the advanced features power users and network managers have been clamoring for.
OS/2 supports three "environments" and will come in three versions. The three en-

TABLE 1-IBM PERSONAL SYSTEM/2

	Model 30	Model 50	Model 60	Model 80
Microprocessor	8086	80286	80286	80386
Potential system throughput	Up to $2^{1 / 2}$ times PC XT ${ }^{1 m}$	Up to 2 times PersonalComputer AT*	Up to 2 times Personal Computer AT	Up to $31 / 2$ times Personal Computer AT
Standard memory \qquad Expandable to	640 KB	$1 \mathrm{MB}$	$\begin{aligned} & 1 \mathrm{MB} \\ & 15 \mathrm{MB} \end{aligned}$	$\begin{aligned} & \text { Up to } 2 M B \\ & 16 \mathrm{MB} \end{aligned}$
Diskette size and capacity	$\begin{aligned} & 3.5 \text {-inch } \\ & 720 \mathrm{~KB} \end{aligned}$	$\begin{aligned} & 3.5 \text {-inch } \\ & 1.44 \mathrm{MB} \end{aligned}$	$\begin{aligned} & 3.5 \text {-inch } \\ & 1.44 \mathrm{MB} \end{aligned}$	$\begin{aligned} & 3.5 \text {-inch } \\ & 1.44 \mathrm{MB} \end{aligned}$
Fixed disk Additional options	20 MB	20 MB	$\begin{aligned} & 44,70 \mathrm{MB} \\ & 44,70,115 \mathrm{MB} \end{aligned}$	$44,70,115 \mathrm{MB}$ $44,70,115 \mathrm{MB}$
Maximum configuration	20 MB	20 MB	185MB	230 MB
Expansion slots	3	3	7	7
Operating system(s)	PC DOS 3.3	PC DOS 3.3 and Operating System $/ 2^{\text {ma }}$	PC DOS 3.3 and Operating System/2	PC DOS 3.3 and Operating System $/ 2$

vironments (DOS, Family, and OS/2) allow various levels of software compatiblility. The DOS environment should be totally compatible with existing programs; the OS/2 environment will allow full access to the features of the new computers (what we call the M \& M's: Multi-tasking and extended Memory); and the Family environment provides a bridge between the two.
The Standard Edition Version 1.0 of OS/2 will include extensive on-line help facilities and support for the $M \& M^{\prime}$'s. IBM expects to release 1.0 in the first quarter of 1988. The Standard Edition Version 1.1 will include all the capabilites of 1.0 , plus a Macintoshstyle graphics/window user interface. IBM expects to announce a release date for 1.1 by the end of 1987. According to the rumor mill, the window interface may be Microsoft Windows, IBM's own (and neglected) Top View, or some combination thereof.

IBM calls the third version of OS/2 the Extended Edition, and it will include an advanced relational database manager, an advanced communications program (that will allow background communications), and terminal emulation. The extended edition seems to be aimed primarily at users who do a great deal of work on both PC's and mainframes.

Price and performance

It's easy to see that IBM is not going after the rock-bottom clone market, although the new models are not hopelessly expensive, either. For example, one week after IBM's announcement, Model 30's were being sold across the counter in New York City for about $\$ 1400$ for the dual-floppy model and about $\$ 1800$ for the floppy/hard-disk model. That price doesn't include a monitor, which runs an extra $\$ 225$ or $\$ 475$ (street price) for monochrome or color, respectively. However, that price does include everything IBM and the clone makers previously sold separately - video adapter card, ports, RAM, etc. Meanwhile, prices of the old models have dropped on the order
of 30%, so now you can get a real IBM for the cost of a clone.

Technically speaking, the new machines indicate that $5 \frac{1}{4^{\prime \prime}}$ disk drives are on the way out and that $31 / 2^{\prime \prime}$ drives are on the way in. The takeover will be gradual, but it is inevitable - as was the transition from $8^{\prime \prime}$ to $5 \frac{1}{2}$ / $^{\prime \prime}$ disks-because the new disks are much more durable and hoid much more information than the old ones.

The problem with video is much more difficult to discuss, mainly because at this early date there is little hard data. We know that the new graphics hardware is not compatible with EGA and Hercules standards, but we've been unable to find out whether it's possible to run an EGA or Hercules card in a Model 30. (The bus structure of the more powerful machines precludes EGA Hercules use in those machines.) If it's not possible, until present-day graphics software is adapted to the new video standard, it will have to run in CGA mode. On the other hand, it appears that text-mode software will be able to take advantage of the new higher-resolution hardware, so word processors, outline processors, and the like should benefit immediately.

What to buy

If you want to buy a PC now, first you must chocse between IBM and non-IBM equipment. If you choose IBM, you have to choose between old technology and the Model 30, on the one hand, and the Models 50,60 , and 80 on the other. And the choice may not be easy, depending on your needs. If you're quite sure of your present and future needs, and an old-technology machine or a Model 30 will meet those needs, buy one. Present hardware and software will power those machines for perhaps another five years without looking too dated However, beware that software developers will gradually shift the focus of their efforts over to the new machines, and that development efforts for the old machines will gradually cease (as happened with CP/M).

Choosing among a Model 30, an IBM PC (or XT), and a clone is difficult, but if I were buying today I'd lean strongly toward a Model 30 because it bridges past and future technologies
On the other hand, if you want a machine that you can grow with, one that will be able to take advantage of the M \& M 's and the applications software that will put the hardware to work, buy one of the morepowerful new machines $\boldsymbol{\omega}$

KEYBOARD MEDLEY

Keyboards are not all created equal. Like people, they come in a variety of sizes and shapes, and they all work differently. The differences among keyboards may seem trivial, but if you spend much time pounding on one, you'll want to ensure that it has the right feel for you. If you work on a number of different keyboards, trying to adapt to the differences among them can make you yearn for a long rest in a wellpadded cell.

We want to keep you out of that cell, so here's the lowdown on various keyboards. We've got fat ones, thin ones, plain ones, fancy ones-there are eight in all, and they cover the majority of styles (PC, AT, and Enhanced) in common use. And several have features that make them attractive for special applications (typing, CAD, use by untrained users, etc.)

The original

IBM introduced the PC in 1981. The first thing many people noticed was that IBM completely abandoned the layout it had standardized on the Selectric series of typewriters. (See Fig. 1.) The major faults are that the Return key is smail and hard to reach, and that the Backslash key is located between the " Z " key and the Left Shift key. Other features (which some users love, but many hate) are that the keys must be depressed far to get a response, and each depression causes the keyboard to emit a loud mechanical click (as opposed to a soft, electronically controlled one).

In addition, the Caps L.ock, Num Lock, and Scrolt Lock keys have no indicator lights, so you can't tell which mode you're in without typing something (and then erasing it!). Also, the layout of the numeric keypad leaves much to be desired For example, there is no Enter key, but the " + " key occupies the space of three keys!

Key Tronic 5151

The first attempt to improve that unpopular layout was made by the Key Tronic company, it has become a standard in its own right, although it is not without its problems too.
The 5151 keyboard addressed many of the faults of the original. The biggest difference is that an additional keypad was added so that it is not necessary to toggle the Num Lock key to alternate between using the keypad to type numbers and move the cursor. The Return key was also enlarged, the Backslash key was moved to the far side of the Right Shift key, and the Grave key () was moved above the Return key, to leave more room for the latter.

In addition, the function keys were moved from the dual row on the left side of
the keyboard to a single row above the main portion of the keyboard. Indicator lights were added to the toggle keys, and an Enter key (which is equivalent to the Return key) was added to the existing numeric keypad.

The feel of the keys is mushy, and, although you're unlikely to press the backslash key accidentally with the 5151's layout, it's also hard to get to it (without looking) when you do want to press it. in addition, KeyTronic Placed the Caps Lock key between the "A" key and the Ctrl key, so it's easy to hit it by mistake.

A Zenith clone

The keyboard Zenith Data Systems sells with several computers is shown in Fig. 3. It corrects many of the faults of the original IBM board, has a slightly mushy feel (but not as much as the KeyTronic model), and emits a nice keyclick (through the speaker in the system unit) The Return key is large, and there is an Enter key in the numeric keypad. The Backs'ash key was moved down a row, so that it's between the Spacebar and the Alt key. You're not likely to hit it accidentally, but it can be hard to home in on, especially if you also use an IBM or other keyboard. One nice feature is that the toggle keys all have internal LED's. The keyboard is available separately; see Table 1 for more detailed information.

The AT layout

Everyone in the industry knew that there was widespread dissatisfaction with the original IBM layout, but IBM ignored that dissatisfaction when it introduced the XT in 1983. In fact, it wasn't unt.l the AT was introduced in 1984 that IBM attempted to correct its error We were unable to obtain an AT keyboard to photograph, but the layout

TABLE 1-PRODUCTS REVIEWED

Manufacturers

Quixote Corporation
One East Wacker Drive Chicago, IL 60601.
800-325-1850 (Hlinois) 800-523-8356 (Elsewhere)

Key Tronic Corporation
P.O. Box 14687

Spokane, WA 99214
800-262-6006
DataDesk International
7650 Haskell Avenue Van Nuys, CA 91406
800-826-5398
Heath Company
Parts Department Benton Harbor, M1 49022 616-982-3571

Contact your local IBM representative for information on the IBM Enhanced keyboard.

FIG. 1-IBM'S ORIGINAL KEYBOARD

FIG. 2-THE KEY TRONIC KB5151, AN EARLY CLONE

FIG. 3-A ZENITH CLONE

FIG. 4-A FOREIGN CLONE (IN THE AT STYLE)
of the AT-style clone keyboard (shown in Fig. 4) is quite similar. Notice that the Enter key is much larger now. However, the Backspace key is smaller, and the Backslash key has been moved to the upper row (between the BackSpace and the " = "keys).

The clone board shown in the photo has an Enter key in the keypad, but the AT does not. In addition, on the AT, the upper right keypad key is labeled SysReq; that key is not normally used by DOS. Beneath it is the PrtSc key, followed by the "-" key and the " + " keys. On the AT, the " + " key occupies the space of two keys.

The strangest thing about the AT layout is that the Esc key has been moved from its traditional place at the upper left corner of the main keyboard to the upper left corner of the numeric keypad. One can only speculate why that was done. The Grave key was moved to the normal Esc position. The AT keyboard also has indicator lights for the togsle keys.

IBM's Enhanced keyboard

Two years after the announcement of the AT, IBM introduced the XT 286, a machine

FIG. 5-IBM'S ENHANCED KEYBOARD

FIG. 6-THE DATADESK TURBO-101

FIG. 7-QUIXOTE CORPORATION'S RAPIDWRITER

FIG. 8-THE KEY TRONIC KB5153
halfway between the XT and the AT in computing power. Along with the XT 286 came a new keyboard, the so-called Enhanced keyboard. If you had never seen a computer keyboard before, you'd probably say that it's a work of art. (See Fig. 5.) The main keyboard has a symmetrical layout and there are separate numeric and cursor keypads. Also, there are two new function keys, for a total of twelve function keys, and 101 keys overall.

The feel of the new keyboard is wonderful; you don't have to press the keys very far or very hard. There's no audio feedback, but you don't need it; the keys themselves provide a pleasant yet unobtrusive click.

In fact, there's only one real problem with the Enhanced keyboard: the Ctrl key. Actually there are two Ctri keys and two Alt keys, located symmetrically on both sides of the Spacebar. The normal position for the Ctrl key is now occupied by the Caps Lock key. If you're used to a keyboard with Ctrl in the normal position, you may go wild trying to adapt to the new position.

Another anomaly of the Enhanced keyboard is that the Esc has been moved yet
again-now it's at the left edge of the upper row of keys, by the Function keys. At least that's the same general area as normal.

The numeric keypad finally has an Enter key, and the Backslash key is now in a reasonable location: just above the Enter key in the main keyboard. In addition, the BackSpace key is now large and easy to find; it's located just above the Backslash key

The DataDesk Turbo-101

There's always someone waiting to correct an IBM mistake. The Turbo-101 has much going for it, including a switch that allows you'to swap the functions of the Caps Lock and the Left Ctrl keys, and keycaps to make it look as if the keyboard had been designed that way from the beginning.
in addition, another switch adapts the board for use with either a PC (or XT) or an AT. The board can also be used with either the old BIOS ROM (which doesn't recognize the new function keys) or new BIOS ROM's (which do). If you use the Turbo-101 with an oid BIOS ROM, F11 generates Alt-F9 and F12 generates Alt-F10 key codes. By cutting the leads of two diodes, you can force the keyboard to generate the new scan codes for those keys. Further, the Tur-bo-101 comes with a copy of Borland's Turbo Lightning, a combination spelling checker and thesaurus

The only problem with the keyboard is that each key has a soft detent that is inferior to that of IBM's Enhanced keyboard. Other than that, the Turbo-101 is a good deal.

Special keyboards

Several firms have taken the idea of improving the IBM keyboard further than merely re-arranging the layout. For example, the RapidWriter (shown in Fig. 7) is a hardware/software combination that is designed to increase secretarial efficiency by automating the process of typing repetitive words and phrases.

The keyboard is identical to the KeyTronic 5151. (Just as we were going to press Quixote Corporation informed us that future versions of RapidWriter will come with a 101 -key enhanced keyboard. The software has allso been upgraded.)

The software loads a special keyboard driver that senses when several keys are pressed simultaneously. That condition is called a "chord" by Quixote. When the keys corresponding to a previously stored chord are pressed, an entire word or phrase flows into the current document, just as if that word or phrase had been typed at the keyboard Chords are stored in dictionaries; each dictionary can contain 250 chords for a total of 16,000 characters. You can have an unlimited number of dictionaries, as each is stored in a separate disk file.

You can cause the first letter of a chord to be capitalized by pressing a Shift key when you press the chord. Or you can capitalize the entire chord by pressing Caps Lock with the chord. In addition, you can define
chords that pause one or more times during chord expansion, allowing you to type information at the keyboard. And a chord can "call" another chord, expand it, and return to the calling chord. You canalso edit and print chords.

KeyTronic 5153

The most innovative and useful special keyboard we've seen is the KeyTronic 5153 (shown in Fig. 8), because it contains a programmable keypad (on the right side of the unit) instead of separate numeric and cursor keypads.

The basic keyboard layout is in the AT style, with the Escape key in the numeric keypad: The keyboard has the typical KeyTronic feel-mushy, but nof sô mushy as some inexpensive clones. The programmable keypad is like a digitizing tablet; it can resolve motion to a precision of about 0.001 inch. You use the keypad by pressing it with your finger or with a plastic stylus.

The keypad has severai modes of operation. You can use it as a cursor keypad, in which each press is converted into equivalent cursor-key codes. In the function-key mode, the pad is divided into a number of squares, each of which is freely programmable. KeyTronic supplies program files (and plastic overlays) for common DOS commands (DATE, TIME, TVPE, FORMAT, etc.), and for popular applications programs, including WordStar and Lotus 1-2-3. KeyTronic also supplies software that allows you to create your own keypad macro files (for matrix sizes of $2 \times 2,3 \times 3,4 \times 4$, or 5×5); and blank overlays.

In the mouse morde, the keypad emulates operation of the Microsoft mouse; to use it, you run the stylus across the keypad. A graphics mode functions similarly, but each point on the keypad corresponds to a point on the display screen. You can also use the keypad in several mcdes that combine the above modes.

Conclusions

Each of the keyboards we examined has merit; some are better for particular applications than others. The main features you'll want to consider when buying a keyboard are the overall layout, indicator lights, feel (mushy, "clicky," or somewhere between the two), and extra features (bundled software, for example). The most important feature is layout, so examine it carefully; layout can make the difference between productive and non-productive use of a machine. Try before you buy.

Which would we choose? For general use, the IBM Enhanced keyboard. It has by far the best feel, and is now the standard of IBM's entire line of PC's.

The KeyTronic 5153 is our runner-up. It has a good feel, and the keypad can save the cost of a mouse, a digitizing tablet, or both. A person just starting out in computing could get by with it until he or she could justify the cost of the extra peripheral.\$(

FROM K€YPRESS TO SCAN CODE

IBM keyboards come in a variety of sizes and shapeshere's how they work and how they differ from
one another.

JEFF HOLTZMAN,

TECHNICAL EDITOR

|BM's Technical Reference manuals are notorious sources of both information and misinformation-or perhaps we should say noninformation. Keyboard documentation is a perfect example. The "schematic diagram" (from the manual for the original PC) is little more than a block diagram, and is little help in understanding how the keyboard works. The circuit functions basically as discussed in our other article on keyboards this issue, except that the 8048 microprocessor performs the matrix scanning that the logic IC's do in the discrete-logic versions

The most informative (and interesting) information about how the keyboard functions in the IBM PC is contained in the software listings in IBM's Technical Reference manuals. In this article we'll discuss how the software processes the raw key codes generated by the hardware, and we'll present a BASIC program that demonstrates graphically how your keystrokes are interpreted at various levels by the computer.

Hardware, BIOS, DOS

You can view the IBM PC from three different perspectives, as shown in Fig. 1. At the lowest level is the hardware: the microprocessor, RAM and ROM memory, the disk drives, the display
adapter card, the monitor-and the keyboard. Controlling the hardware, of course, is software; and, in the IBM, there are two levels of control software.

FIG. 1-hARDWARE AND TWO LEVELS OF SOFTWARE comprise the IBM PC. The user interacts with the hardware, which communicates with the BIOS. DOS provides a number of highlevel functions for programmers to use in accomplishing a wide variety of tasks, including reading and writing disk drives, communications ports, and the keyboard.

The lower of those two levels is the BIOS (Basic Input/Output System); it is contained in a ROM (or in an EPROM on most clones) Code in the BIOS ROM is responsible for all of the low-level functions of the computer: displaying characters on the screen, sending them to the printer, transferring data to and from the disk drives, getting keystrokes from the keyboard, etc

The upper software level is the DOS (Disk Operating System), which is contained in several files on disk. DOS is the level through which programmers are supposed to display data, manipulate disk files, and get keystrokes. However, to improve performance (or sometimes just by preference), many programmers 90 to the BIOS (or even to the hardware itself).

Interrupts

To understand how the hardware communicates with the software, you must understand the basics of interrupts. A device (the keyboard, for example) can interrupt the normal processing of the

Other software interrupts, at both BIOS and DOS levels, allow many operations, inciuding displaying characters, getting user input from the keyboard, reading and writing disk drives, reading and writing communications ports, etc. As we saw, interrupts can interrupt each other (sometimes-but that's a story that we'll not get into here.) With the basics of interrupts in mind, now let's see how the keyboard-interrupt-processing software works

Keyboard hardware, BIOS software

Keyboard processing on the IBM provides a good example of how the hardware meshes with the software. As we said, each keypress generates an interrupt 9 . That interrupt is processed in the BIOS ROM and then passed on to DOS for further, more sophisticated handling.

There are 83 keys on the standard IBM keyboard; each has an associated eight-bit scan code. The keys and their scan codes are shown in our lead illustration and in Table 1. Each time you press a

TABLE 1-IBM KEYBOARD CODES

Code	Label	Code
1	Esc	22
2	1	23
3	2	24
4	3	25
5	4	26
6	5	27
7	6	28
8	7	29
9	8	30
10	9	31
11	0	32
12	-	33
13	$=$	34
14	$B k s p$	35
15	Tab	36
16	Q	37
17	W	38
18	E	39
19	R	40
20	T	41
21	Y	42

Label
U
I
O
P
1
Jetn
Ctrl
A
S
D
F
G
H
J
K
L
\vdots
I
I
LShft

Code	Label
43	\vdots
44	Z
45	X
46	C
47	V
48	B
49	N
50	M
51	\quad
52	\vdots
53	RShft
54	PrSc
55	Alt
56	Space
57	CapLk
58	F1
59	F2
60	F3
61	F4
62	F5

Code	Label
64	F6
65	F7
66	F8
67	F9
68	F10
69	NumLk
70	ScrLk
71	Home
72	UpArw
73	PgUp
74	-
75	LftAr
76	5
77	RgtAr
78	-
79	End
80	DwnAr
81	PgDn
82	Ins
83	Del

computer's 8088 microprocessor. When you press a key at the keyboard, it generates a signal that is sent to the computer; that signal says "Hey! Somebody pressed a key!"

The microprocessor then stops what it is doing and loads the address corresponding to the keyboard handler (interrupt 9) from a special location in memory. (Unless otherwise specified, all numbers in this article are in decimal notation). Processing continues at that address as the 8088 reads the keyboard port, converts the raw key code into something meaningful, and stores it for use by whatever program was running before the interrupt occurred. Last, the 8088 performs a special instruction (IRET, for interrupt Return) that allows it to continue where it left off before the interrupt took place.
Devices other than the keyboard (the disk drives and the serial ports, for example) generate their own interrupts, which the 8088 processes in the same fashion. The difference is that each interrupt is directed to a different location in memory.

In addition to hardware interrupts, the 8088 also allows software interrupts for many commonly used functions. For example, when you press Shift-PrtSc, whatever is displayed on the screen is sent to the printer. That works as follows: First the two keypresses (Shift and PrtSc) generate their own interrupts. The computer processes those interrupts one at a time, and, when it realizes that a printscreen operation should be performed, it generates interrupt 5 (from within the interrupt-9 handler). Interrupt 5 does the screenprint and then returns to the interrupt- 9 handler, which then returns to whatever program was in control when Shift-PrtSc was pressed
key (any key, including the ones you don't normally think of as generating a code-the Shift keys, Alt, Ctrl, etc.), the keyboard interrupts the microprocessor, sending it the scan code. Each time you release a key, the keyboard generates another interrupt, sending it the same scan code, but now with the high bit set (i. e., the scan code +128).
The BIOS then translates the scan codes into ASCII and other codes, depending on the state of eight keys: Control, Alt, Delete, Insert, Left Shift, Right Shift, Num Lock, Caps Lock, and Scroll Lock. For example, the "A" key has a (hardware-level) scan code of 30 . So when that key is pressed, the 8048 in the keyboard sends a 30 to the IBM BIOS through interrupt 9. When the key is released, the keyboard sends a $158(30+128)$ to the computer. If the " A " key is pressed continuously, the 8048 continuously sends 30's until the key is released, at which time a 158 is sent.
The BIOS would translate that 30 into a lowercase "a" (ASCII 97). But suppose that one of the shift keys were pressed simultaneously with the "A." In that case, the BIOS would translate that 30 into an uppercase " A " (ASCII 65). If the Control key were pressed, the hardware-level 30 would become a BIOS-level Cntl-A (ASCII 1). If Caps Lock were on and one of the shift keys were pressed, a lowercase "a" would be generated.

However, if the Alt key is pressed with the "A" key, something funny happens: The BIOS now generates two codes, the first of which is a zero, and the second of which is often (but not always) the scan code for that key. And the scan code, of course, bears no relation to standard ASCil codes. The Function keys, the arrow keys,

916	YBOX $=2 \\|:$ XLEN $=8: Y$ PEN $=4$
930	FOR FKEY=2 TO 72 STEP 10
948	XROX $=$ F KEY
950	GOSUB 600
960	NEXT
978	Restore 1078
989	FOR FKEY=3 TO 73 STEP 10
998	locate 18,fkey
1800	read as
1010	PRINT AS
1020	locate 19,fKEy
1830	read as
1840	PRINT AS
1850	NEXT
1060	RETURN
1679	Data Right, Shift, Left, Shift, Control, Alt
1880	Data Scroll, Lock, Num, Lock, Caps,Lock, , insert
1100	REM draw bios box
1110	Locate 11,30
1120	PRINT "BIOS-level scan code ";
1130	XBOX $=35:$ YBOX $=12:$ XLEN $=10:$ YLEN $=3$
1148	GOSUB 608
1158	RETURN
1208	REM Draw oos boxes
1210	$\mathrm{XBOX}=20: Y \mathrm{BOX}=4: \mathrm{XLEN}=5: Y$ LEN $=3$
1228	gosub 600
1230	Locate 7,20
1240	PRINT "ASCII";
1250	$\mathrm{XBOX}=30: \mathrm{YBOX}=4:$ XLEN $=26:$ YLEN $=3$
1268	cosub 608
1278	LOCATE 7,32
1280	PRINT "Description";
1298	LOCATE 3,31
1300	PRINT "The dos interpretation";
1310	RETURN
2000	REM Initialize
2010	KEY OFF:CLS:DEFINT A-Z:DEF SEG=8 H 40
2028	FOR I = 1 TO 6:FILLS=FILLS +CHRS (219): NEXT
2030	FOR I=1 TO 10:KEY I,"": NEXT
2048	NOPRINTS=CHRS(7)+CHR\$(9)+CHRS(10) +CHRS(12)+CHRS(13)
2050	LOCATE 1,19.8
2655	PRINT "Computer Digest Keyboard Demonstration";
2860	GOSUB 900 : REM draw shift keys
2970 2980	GOSUB 1100 : REM draw BIOS box
2080	GOSUB 1209 : REM draw dos box
2090	DIM DESCS (132)
2110	FOR I=1 TO 132:READ DESCS(I):NEXT
2129	RETURN
3000	REM Key labe! data
3010	DATA , ,Null, .,.,.,
3620	data Back-Tab
3039 3040	Data Alt-Q, Alt-W, Alt-E, Alt-R,Alt-T, Alt-y, Alt-U,Alt-I, Alt-o, Alt-P
3050	DATA Al't-A, Alt-S, Alt-D,Alt-F,Alt-G, Alt-H, Alt-J, Alt-K, Alt-L
3068	data .,.,
3070	
3080	Data .,.,.,.
3090	DATA F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,
3100	DATA Home, Up-arrow, PgUp, Left-arrow, Right-arrow, , End, Down-arrow
3118	DATA PgDn,ins, Del
3120	data Shift-Fl, Shift-f2, Shift-F3, Shift-F4, Shift-f5
3130	DATA Shift-F6, Shift-F7, Shift-F8, Shift-F9, Shift-fid
3140 3159 3160	data Cntl-F1, Cnt1-F2, Cntl-F3, Cnt1-F4, Cnt1-g5
3150	DATA Cntl-F6, Cntl-F7, Cntl-F8, Cntl-F9, Cntl-Fl0
3168	DATA Alt-F1, Alt-F2,A1t-F3, Alt-F4, Alt-F5
3178	data alt-F6, Alt-F7, Alt-F8, Alt-E9, Alt-Fld
3180	data Cntl-PrtSc, Cntl-Left-arrow, Cntl-Right-arrow
3190	data Cntl-End, Cntl-PgDn, Cntl-Home
3200	
3210	DATA Alt-6, Alt-7, Alt-8, Alt-9, Alt-g
3220	data Altw, Alt $=$, Cntl-Pgup

 RETURN
REM Clear box

LOCATE YBOX+1, XBOX
PRINT "

LISTING 1

FIG. 2-OUR DEMONSTRATION PROGRAM shows the state of all shift keys, BIOS-level scan codes, and the high-level interpretation of those codes.

Home, etc., all generate the two-byte codes.
If you want to see which codes are generated by which keys (and combinations of keys), the program in Listing 1 provides a graphic representation of how those keys are interpreted. You can download the program (KEYMON.BAS) from our BBS (516-293-2283); if you type it in yourself, make sure you enter all the commas in the DATA statements.

For example, after pressing Scroll Lock, insert, and the "J" key, the screen appears as shown in Fig. 2. You'll notice that the boxes corresponding to the Shift keys, Ctrl, and Alt light up as long as you press those keys and go dim when you release them. By contrast, Num Lock, Scroll Lock, Caps Lock, and Insert are tosgles-each time you press one of those keys, an internal flag is alternately set and reset that indicates the given state (on or off).

You'll notice that some keys and key combinations produce no display. For example, the " 5 " key in the keypad produces no code when Num Lock is off. It's important to understand that every time you press any key the keyboard generates an interrupt (unless the keyboard buffer is full, at which point the keyboard will beep). If pressing a key produces no apparent result, that's because the BIOS has defined no code for that key (or combination).

Some programs make use of the "undefined" keys. For example, Cruise Control (reviewed in this month's Editor's Workbench), uses that " 5 " key (when Scroll Lock is off) as a special hotkey for controlling various functions. However, to get at those undefined keys, you have to write a complete Interrupt 9 handier-and that's no trivial pursuit.

Our demonstration program has several "bugs." Those bugs are due to differences between the ways that BASIC and DOS treat the keyboard. For example, if you print a $C H R \$(12)$ to the screen in BASIC, the screen will be cleared. In DOS, however, you'll see the "female" symbol (a circle over a cross). There are several such anomalies; tracking them down will teach you mucn about BASIC and DOS, as well as the keyboard.

ASCII, extended ASCII, and special codes

Basically, ASCII is a seven-bit code that provides a total of 128 (27) unique codes. However, personal-computer memory is organized in eight-bit (or 16-bit) chunks. So why didn't IBM encode all the special keys in the upper 128 ASCII codes? The reason is that IBM wanted to retain the upper codes for use by displayable characters. For example, most of the codes from 128 to 167 are foreign-language characters. Others include box-drawing characters, special math symbols, etc.

You know how to type in standard ASCII codes and the two-byte special codes-but how do you type in the extended ASCII codes? Some programs let you do so directly (for example, by associating special characters with the Function keys); the IBM BIOS lets you type in any ASCII code from 1 to 255 as follows. Press the Alt key, and hold it down. Now type the three-digit decimal code that corresponds to the desired character. Use only the keypad
keys, not the number keys above the main keyboard. After you release the Alt key, the character will be displayed. That procedure works in BASIC, at the DOS command line, and in some (but not all) applications programs

New keyboards

When IBM introducted the IBM PC AT in 1984, it introduced a new keyboard. The AT keyboard has a new layout (as shown in the review in Editor's Workbench this issue), and it works differently The biggest hardware difference is that the keyboard now both transmits and receives data. You can force it to stop scanning temporarily, resume scanning, set the "Typematic" (repeat) rate, and turn the status-indicator LED's on and off.

In addition, the hardware-level scan codes have changed. The keys have different numbers, and there is one new key. However, those hardware differences are transparent at ail levels above (and including) the BIOS. So our demonstration BASIC program works on the AT. But any program that works with the keyboard at the Interrupt 9 level must know whether it is running on an AT or a standard $P C$.

IBM still wasn't satisfied with the state of keyboard confusion, so, when the company introduced the XT 286 last fall, it introduced yet another keyboard. The new keyboard has 101 keys, even more commands issuable by the system, and three (!) software-selectable sets of scan codes. The first set is similar to the PC/XT set; the second set is similar to the AT set; and the third set is similar to the AT set, except that every key generates a unique code, regardless of the state of any of the shift keys (including Cntl, Alt, etc.) The last set should make it unnecessary for keyboard-enhancement programs to take over the keyboard-processing interrupts completely. However, such programs will still have to contend with the PC/XT and AT keyboards. Set 2 is the power-up default set.

To give you some idea of how the three sets of scan codes are related, consider this example. The enhanced keyboard has two Insert keys, one in the numeric pad (key 99), the other in the new cursor-control pad (key 75) located between the typewriter and the numeric-keypad sections. Table 2 shows the codes that are generated from each set when Insert is pressed and no shift keys are pressed.

TABLE 2-ENHANCED KEYBOARD INSERT CODES

Code		Key 75	Key 99	
Set	Make	Break	Make	Break
1	E0 52	EO D2	52	D2
2	EO 70	EO FO 70	70	FO 70
3	67	FO 67	70	FO 70

Programming and the special keys

In BASIC, you can use the normal INKEY\$ function to get both standard and special keys. Normally INKEY\$ collects single characters, but when a special key is pressed, INKEY\$ returns two characters, the first of which is a CHR\$(0). As at the BIOS level, that's a sign that another character is available. You can test for the existence of a special code by checking the length of the string that INKEY\$ returns. Our demonstration program illustrates the procedure; see lines 100-220

If you're interested in working with the keyboard in assembly language, you'll want to understand how BIOS interrupts 9 and 16 , and DOS interrupt 33 (function calls less than 10) work. The best sources of information for BIOS listings and scan codes are IBM's Technical Reference manuals for the PC (or the $X T$), the AT, and the XT 286, as well as the DOS Technical Reference manual. Some of those manuals are hard to obtain (and expensive), so you may wish to consult Peter Norton's Programmer's Guide To The IBM PC and Ray Duncan's Advanced MS DOS. Both are published by Microsoft Press, and both are excellent sources of information on the BIOS, DOS and other subjects.

WORKING WITH SURPLUS KEYBOARDS

How they work, and how to use 'em.

Robert Grossblatt

0nce upon a time, most of us had to throw switches and turn dials, but if you spent some extra bucks, you could talk to your equipment by pressing buttons. Things stayed like that until calculators showed up. When computers hit the market, keyboards became commonplace.
Adding a keyboard to your own circuit is easy. And with the parts market loaded with surplus keyboards, it's inexpensive. But using a keyboard successfully means understanding how it works, how it's driven, and what you need to get it working. Once we know the theory, we'll talk abouthow to use those surplus keyboards sold in the back of this magazine
All keyboard circuits are made up of three parts-the switches themselves, decoding circuitry, and encoding circuitry. Thekeys are wired so that each one produces a unique code that can be passed on to the decoder, the circuit's main section. The encoder will take the keypress and transiate it into whatever kind of information is needed by the equipment the keyboard is talking to. Let's discuss each circuit in turn.

Two methods

The two methods most frequently used to wire up switches are with a common leg and in a row-and-column matrix. In Figure 1 you can see that both arrangements will let each keypress generate a unique code. A common-leg set-up (Fis. 1-a) is much simpler to design but is only suited to applications where a few switches are needed. Since each switch you add means another lead coming from the keyboard, large numbers of switches become wiring nightmares. A matrix keyboard (Fig. 1-b) has fewer connections but it usually needs more support circuitry.
The break-even point for connections is eight switches. A com-mon-leg keyboard that size will need nine leads, and a matrix keyboard will need eight. Since there are advantages and disadvantages to both, which is best depends on what you're doing.

FIG. 1-A KEYBOARD can be wired from a linear array of switches (a) or in an X-Y matrix (b).

FIG. 2-THE TYPICAL KEYBOARD ENCODER uses a clock to increment a counter that controls matrix scanning.

。
FIG.3-A KEYBOARD ENCODER. The scanning circuitry for a commonleg keyboard is shown here.

However you wire your switches, the signals they generate must be decoded. The circuit must recognize that a key is being pressed, figure out which one it is, and then put the appropriate code elsewhere. Decoders can be put together with anything frora handful of resistors and diodes to a microprocessor and a little bit of digital glue.

In all but the simplest keyboards, the decoder uses some sort of clock to scan the switches looking for a keypress. Figure 2 is a block diagram of this kind of circuit. The output of the counter makes the scanner sample each switch on the keyboard. When a key is pressed, the clock is stopped, the count is frozen, and the Any-

Key-Pressed line becomes active. That signal tells some other circuitry down the line that the keyboard is putting out data.

That circuit could be used for both matrix and common-les keyboards. The difference between the two would be in how the keyboard was scanned. Figure 3 shows the scanning circuitry for a common-leg keyboard, and Fig. 4 shows a similar setup using a matrix keyboard. The clock and counting circuitry is the same.

In Fig. 3, the values of R2, R3, and C2 give the clock composed of IC2-b and IC2-c an output frequency of about 100 kHz . That signal drives both IC3, half a 4520 binary counter, and IC1, a 4514 1-of-16 line decoder. As the count cycles from $0(0000)$ to F (1111), each of IC1's outputs goes high in turn. R1 serves two purposes-it holds the common les of the switches low, and, with $\mathrm{C1}$, helps to debounce the switches

When a key is pressed, nothing happens until that output of the 4514 is selected by the count of the 4520 . When the output does go high, the Any-Key-Pressed line goes high, IC2-a inverts the signal and disables the clock and the counter, and puts a low on pin 1 of the 4514 to disable it also. The result of this is that a keypress freezes the output data lines at the selected number and generates a signal to indicate that valid data is on the bus.

There are two features of the circuit that should be noticed. First, although the switches are debounced, the design of the keyboard eliminates switch bounce. If you used noisy switches, the worst that would happen is that the switch would be in an open con-

FIG. 4-SCANNING CIRCUIT for a matrix keyboard.
dition when its output was selected. In that case, the circuit would cycle through another count as the clock kept running. Only a valid keypress would produce valid data.

Two-key rollover

That circuit has two-key rollover. D1 to D16 isolate each of the 4514's output lines, so, if two keys are closed at the same time, the circuit will output the second bit of data as soon as the first key is released
Figure 4 shows a circuit for a matrix keyboard. Though we're encoding the same number of switches as we did in the common les arrangement, we only need nine leads from the keyboard instead of seventeen. The setup is different too. The basic idea behind using a matrix keyboard is to have the control signal come in on one side of the matrix and leave on the other. In Fig. 4, IC4 is a 4028 BCD-to-decimal converter. A binary address on the inputs causes the selected output to go high while all the rest remain low. As we're only handling a four-by-four switch matrix, we only need two of the inputs.

The two low-order bits from the 4520 are routed to the 4028, and the two high-order bits are routed to the 4512, an eight-channel data selector. When one of its inputs is selected, the signal at the input appears at the output. If a key is pressed, the high signal at the output of the 4028 is channeled through the 4512 and serves the same function as the common switch leg did in Fig. 3. It disables both the clock and the counter and also becomes our Any-KeyPressed line to let other circuitry know that there's valid data on the bus. The circuit also has two-key rollover.

Look at Fig. 4 -what about all those unused inputs and outputs on the 4028 and 4512? And what about the other half of the 4520 ? Even though we're only using a four-by-four keyboard, this same ci cuit can be set to handle a ten-by-eight keyboard! We'd cascade

FIG. 5-YOU CAN LATCH THE OUTPUTS of the previous keyboard encoders with the circuit shown here.

FIG. 6-A 2716 EPROM makes an inexpensive yet highly flexible keyboard decoder. It can be re-programmed an essentially unlimited number of times.

FIG. 7-A SHIFT REGISTER can be used to convert the output of a serial keyboard to parallel form (a), or the output of a parallel keyboard to serial form (b).
the two halves of the 4520 to get the seven-bit word length we need and use the last bit to reset the counter.

Now that we've looked at these two basic approaches to keyboard design, it's plain to see why large keyboards use matrix switches instead of common-leg arrangements. But all we have is a keyboard that puts out raw code, and not elegantly. To remedy the situation, the first thing is to hang a latch on the bus. Which latch you use depends on what you want to do with the keyboard. As we're dealing with a four-bit word length, the 4042 seems a good choice, but we have to do something to control how data is clocked into the latch.

If we use the Any-Key-Pressed line to directly control storing data in the latch, there's a chance we're going to get flaky behavior because of timing problems. Things have to happen in sequence. First valid data has to be on the bus, then it has to be clocked into the latch. The Any-Key-Pressed line has to signal something else that waits a while and then opens the latch for storage.

Since we have a NAND gate left over, we'll use it to build an edge detector and coritrol the latch as shown in Fig. 5. Since the latch's polarity control, pin 6 , is tied low, the latch will ignore its inputs as long as the store control, pin 5, stays high. Bringing the store input low will write data into the latch. The edge detector made from IC2-d will generate a negative-going pulse when it sees a positive pulse at its input. With the values given for C3 and R4, the pulse will be about 10 milliseconds wide.

Rates: Ads are $21 / 4^{\prime \prime} \times 27 / 8^{\prime \prime}$. One insertion $\$ 825$. Six insertions $\$ 800$ each. Twelve insertions $\$ 775$ each. Closing date same as regular rate card. Send order with remittance to Engineering Admart, Radio Electronics Magazine, 500-B Bi-County Blvd., Farmingdale, NY 11735. Direct telephone inquiries to Arline Fishman, area code-516-293-3000. Only 100\% Engineering ads are accepted for this Admart.

CALL NOW AND RESERVE YOUR SPACE

- $6 \times$ rate $\$ 800.00$ per each insertion.
- Reaches 239,312 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to:
Engineering Admart, RADIO-ELECTRONICS, 500-B Bi-County Blvd., Farmingdale, NY 11735

Circuit Board Layout Made Easy!

Create and Revise
P-C-B Artwork on your
IBM or Compatible

- User Friendly
- Supports Microsoft
- Economical Mouse
- On-line Help Screen - 2X artwork on printer

Requīrements: IBM or compatible PC - 256K memory - CGA card - IBM graphics compatible printer.

ONLY \$99.00

2145 Highland Ave /Ste. 201
Birmingham, Al. 35205
(205) 933-1122

DEMO DISK $\$ 10.00$
CIRCLE 203 ON FREE INFORMATION CARD

117 PRACTICAL IC PROJECTS BUILD YOU CAN

2645 T-117 PRAC-
TICAL IC PROJECTS YOU CAN BUILD.... \$10.95. Dozens of fully-tested, ready-tobuiid circuits you can put together from readily-available, low cost IC's! There are a
 total of 117 IC circuits ranging from an audio mixer and a signal splitter to a tape-deck amplifier and a topoctave generator organ! From TAB Books. To order your copy send $\$ 10.95$ plus $\$ 2.75$ shipping to Electronic Technology Today Inc., P.0. Box 240, Massapequa Park, NY 11762-0240

LINEAR IC EQUIVALENTS \& PIN CONNECTIONS

BP141—Shows equivalents \& pin connections of a popular user-oriented selection of European, American and Japanese liner IC. 's 320 pages, 8×10 inches. $\$ 12.50$ Plus $\$ 2.75$ shipping. ELECTRONIC TECHNOLOGY TODAY INC., PO Box 240, Massapequa Park, New York 11762-0240.

CIRCLE 180 ON FREE INFORMATION CARD

So there they are, two complete keyboard circuits that will latch unique keycodes from matrix and common-leg keyboards. While you could use the circuits as they are, the data they generate is raw. We still need the third basic part of any keyboard-an encoder.

The encoder

The encoder takes raw data from the keyboard and translates it into something useful-ASCII, custom data, control signals, etc. And there are lots of ways to build one. You can do it with gates, but that buys you a lot of complexity at the cost of flexibility. ROM is a much better way to go. It only takes one chip and the whole configuration of the keyboard can be changed by switching memory. Unless you've got a lot of money, the best memories to use are EPROM's. They're cheap, easy to program, and erasable.

In Fig. 6 you can see how an EPROM would be connected to the circuits we've put together. Since Chip Enable (pin 18), and Output Enable (pin 20), are both held low, a unique address on the address lines (the inputs), will result in programmed data at the outputs. And the data you put in the EPROM is whatever you want for your
particular application. It can be discrete code, or, if you add a bit of clocking, whole strings of data.

Now that we know how keyboards work, what about those keyboards that are available on the surplus market? There are different types-some are ASCII encoded, some are oddball encoded, and some are not encoded at all. The data can come out of the keyboard in either parallel or serial form. You can convert between parallel and serial with only a shift register and a clock. The circuit of Fig. 7-a will convert from serial to parallel, and the circuit of Fig. 7-b will go the other way. You can build a small clock circuit or steal some pulses from the keyboard you're converting.

One last point: Although we've built our keyboards with discrete IC's, there are lots of IC's around that do all the work for you. All you do is connect the switches and add a handful of parts. Most commercial keyboards will use either this approach or do the whole job with something like an 8048 and some software. A gates-only design is a good compromise between cost and complexity. The important point is that no matter how the keyboard works, it has to have the three basic parts we covered.

R-E ROBOT
continued from page 46

The byte-wide input and output ports can also be tested. The following word tests the output latch.

TEST2 BEGIN 0150 PC! FF 150 PC! ?TERMINAL UNTIL ;

The parallel input port can be tested with the following test word. Four lines
are available to you at PL1

TEST3 BEGIN 120 PC(10 /.CR ?TERMINAL UNTIL ;

Execute TEST3 and then short some of the inputs to ground. As you short each input, you should see the display on the screen change.

Expansion

The robot can be expanded in various ways. Il your expansion project requires full use of the RPC, simply couple your

ELENCO PRODUCTS AT DISCOUNT PRICES!

20MHz DUAL TRACE OSCILLOSCOPE \$349 MO-1251

35MHz DUAL TRACE OSCILLOSCOPE $\$ 498$ MO-1252

Tup quality scopes at a very reasonable price. Contains all the desired features. Elenco's 2 year guarantee assures you of continuous service. Two $1 \times, 10 \times$ probes, diagrams and manual included. Write for specs.

circuits to the RPC bus. To interface the circuitry, you need only duplicate the wait-state generator and the bus-buffer interface described in Part 6 (May, 1987). Select a block of $1 / \mathrm{O}$ space between ØIØØH and $\mathrm{E} \emptyset 0 \mathrm{H}$ and start designing.

If your circuit is simple and needs only one or two I/O locations connect it directly to the RERBUS, PL3. Address decoding is accomplished with a single integrated circuit and no bus drivers are needed. For simple digital inputs, digital outputs, and analog inputs, connect the circuit directly to the user connector, PLI

Operation

Now that we have our electronics in place, it is time to consider the software required to make it all work

The software commands to be sent to the motor control circuits should follow this sequence:

- Set up timer 0 of each 8253 (left and right wheel control) for mode 3 operation. We write control word 36 H to register 3 ,
- Write a frequency representing a slow speed into timer \emptyset. We write $\emptyset 200 \mathrm{H}$ to register 0 .
- Close the forward or reverse relay. Write 1 to location $\emptyset 120 \mathrm{H}$.
- Now enable the PLL. Write 1 to location 0124 H

Notice that the relays are closed before the circuit is enabled. That prevents arcing when the contacts close or open.

All those functions are programmed using RCL (Robotic Control Language), a sophisticated language that is implemented in Forth. The RCL lets us control the robot's motions and functions using simple commands. Further, because Forth is extensible, RCL is extensible. That means that any code we write becomes part of the language.

That last feature is especially valuable. For instance, to control circuits connected to the RERBUS we have to change the way in which the byte store and byte fetch words operate-it's like writing new PEEK and POKE words in BASIC

Forth's extensibility allows us to create two new words, PCX! and PCX@, that we can use to access the RERBUS. Those words will operate just like PC! and PC@ but they'll do all of the data manipulation required by the RERBUS. The computer code used to create those words is shown in Table 2.

Notice that we have documented our code with comments to allow you to determine how it operates in case something goes wrong or you want to change it. The comment immediately after the word being defined is a standard Forth-notation comment showing the effect of the word on the stack. For example. PC@ pops one argument off the stack (the address) and pushes one argument on the stack (the data). Next time, we will examine the RCL in greater depth.

Note: The pattern for the display board of the tachometer will be presented next month along with the robot control board patterns.

THE SOLDER SIDE of the speedometer's main board is shown here.

THE COMPONENT SIDE of the speedometer's main board. When mounting components, be sure to solder all leads completely.
 board using 35 jumper wires.

DRAWING BOARD

continued from page 29

Timing is important

As you can see, the sequence and timing of those steps have to be done properly if you want the system to work. And all that we've been talking about so far is the refresh operation. Somewhere in there we have to allow for the time needed for data to be stored to, or read from, the memory. After all, that's the whole reason for building the system in the first place.
The interaction between all the components of a dynamic memory system has to be carefully controlled in order for the circuit to work properly. Refresh has to be constant, and memory access has to be kept to a short operation that won't interfere with maintaining the data. Since a gates-only solution to the problem is so complex as to be impractical, it's obvious we have to look elsewhere for a way to handle all the problems.
Although we can use LSI controllers, they are expensive and hard to locate. The route we're going to follow should already have crossed your mind. Since we're putting together a complex system in which timing and access are the major problems, we can use a microprocessor to handle the job.

NEW PRODUCTS

continued trom page 25
OPTICAL FIBER TOOL SET, model 06808, is designed for preparing single-mode and multimode optical fibers and cables.

The tool set consists of KevlarStrip tool-a hand tool designed to remove any length of Kevlar-reinforced protective sleeving between 2.5 mm and 6.5 mm diameter; sleeve guides to ensure correct positioning of the sheath (the guides are selected according to the sheath diameter); OptiStrip tool-designed to remove secondary coatings from optical fibers and small cables less than 2.5 mm in diameter; guide bushings; Silicon-Strip tool-used for

Microprocessor control

The Z-80 is the perfect CPU for the job. It has many memory-control signals as well as built-in circuitry especially designed for controlling dynamic RAM. An internal refresh counter will automatically provide the sequential addressing we need to take care of refresh, and the address is put on the bottom of the address bus during the tail end of each op code fetch.

The beauty of that scheme is that the $Z-80$ doesn't have any need for the address bus once it's loaded the op code. During portions of the instruction cycle the memory is idle. That gives us the time we need to use the address to refresh the RAM. Since the $\mathrm{Z}-80$ is busy elsewhere during that time, it doesn't have to slow down or wait for the refresh operation to be carried out.

When we pick this up again next time, we'll start designing the circuitry that is needed to handle the system shown in Fig. 1, and we'll show how to calculate the system speed, timing parameters, and so on. So pull out your Z-80 data books; you'll be needing them because we'll be poking around the Z-80 anatomy.

Finally, next time l'll be announcing the free-subscription winners of the DTMF remote control system contest.

R-E

CIRCLE 37 ON FREE INFORMATION CARD
fast removal of silicone coatings; cutters, and screwdrivers.

The model 06808 costs $\$ 157.25$. -Davle Tech, Inc., 2-05 Banta Place, Fair Lawn, NJ 07410 . R-E

CIRCLE 108 ON FREE INFORMATION CARD

Technicians,
 Get Serious
 About Your
 Profession

Being a certified electronics technician lets people know that you are a professional in your field. It tells them that you are serious about your work and can perform up to CET standards.

Now you can order the "Study Guide for the Associate-Level CET Test" from the International Society of Certified Electronics Technicians. It includes material covering the most often missed questions on the Associate CET exam. $811_{2}^{\prime \prime} \times 11^{\prime \prime}$, paperback, 60 pages.

For More Information Contact:
ISCET, 2708 W. Berry, Fort Worth. TX 76109; (817) 921-9101

NAME
ADDRESS
CITY \qquad STATE
ZIP
copies @ $\$ 5$ + $\$ 1$ postage.)
___send material about ISCET and becoming certified.

SCRAMBLING

conimued from page 61
ventional TV receiver, it is, for all intents and purposes, scrambled. To actually scramble the signal we must rearrange the bits and bytes that represent the andio. For example, we could scramble the audio by encoding the data bits themselves-the 16 audio bits in each horizontal blanking interval. That could be done by adding a random set of digital numbers to the binary numbers that represent the audio signal. Or, we could use matrix encoding to generate a non-related encoding of each binary number. For example, binary 63 might be transformed to binary 35 , while binary 94 is transformed to binary 181 , etc. For 256 words (a 16 -bit system) there are 256! possible combinations. (256! represents 256 factorial, which means: $256!=[256 \times 255 \times 254 \ldots \times 2 \times 1]$.

The algorithm used in Videocipher II is the NBS Data Encryption Standard. In that method, the data is encoded using a 64-bit algorithm (eight of which are used for parity checking), leaving 2^{56} possible combinations for a de-encryption key. 2^{56} is a rather large number-about 72 thousand million million (72 quadrillion). UnIcss the correct key is known, it is therefore essentially impossible to decode the audio.

In review

Over the last year or so, we've highlighted a number of scrambling and descrambling topics. For those newcomers Who have picked up the series in midstream, here's a review of those topics, and when they appeared:

In the June, 1987 issue we looked at the basic structure of a video signal and some of the simpler scrambling techniques, such as inverting the video and suppressing the sync. Also discussed were the ways in which audio signals are hidden.

In July we discussed a hypothetical digital video-scrambling system.

In the August issue we showed some of the basic circuitry used in POPULAR scrambling systems such as in-band gated sync and SSAVI. Those circuits included several different variable-attenuators and variable-gain amps. We also showed some rudimentary but workable descramblers inclading one built around a Phase Locked Loop (PLL) that was used to recover a suppressed sync pulse.

In September we looked at PLL's in greater depth, and briefly discussed sincwave, SSAVI, and outband decoding. The SSAV1 system was discussed in greater depth in November.

In December we moved from the theoretical to the practical by presenting a functional sincwave descrambler for experimenters. In January and March, 1987 we did the same for those interested in the
in-band gated sync and the outband scrambling systems.

To make getting the parts easier, North Country Radio (P.O. Box 53, Wykagyl Station, New Rochelle, NY 10804) provided kits of parts, including PC boards. The following are still available.

- Pulse Decoder: Item PD-I: PC board plus all components on the PC board. $\$ 54.95+\$ 2.50$ shipping and handling.
- Outband Decoder: Item OB-l: PC board plus all components on the PC board. $\$ 34.95+\$ 2.50$ to cover shipping and handling.
- Sinewave Decoder: Item SW-I: PC board plus all components on the PC board including C13, Cl4, Cl5, CRI, and RI7 necessary for the interface box. $\$ 52.95+\$ 2.50$ postage and handling.
- All three items, PD-I, OB-1, and SW-1, $\$ 129.95+\$ 3.50$ shipping and handling.
New York State residents please add the appropriate sales tax.

Finally, the authors of this series have written a book on the topic entitled Video Scrambling and Descrambling for Satellite and Cable TV. It is published by Howard W. Sams and can be purchased at most local hookstores and electronics distributors. It can also be purchased direct from the publisher (ask for book number 22499). It retails for $\$ 19.95$.

R-E

Try the

bulletin board system
(RE-BBS)
516-293-2283
The more you use it the
more useful it becomes.
We support 300 and 1200 baud operation.
Paramelers: 8N1 (8 data bits, no parity, 1 stop bit) or 7E1 (7 data bits, even parity. 1 stop bit).
Add yourself to our user files to increase your access.
Communicate with other R-E readers.
Leave your comments on R-E with the SYSOP.

RE-BBS

516-293-2283

DIGITAL SPEEDOMETER

continued from page 51
voltage at the appropriate pins of each IC. After debugging any problems, apply a test signal to the speedometer. Connect a sinewave generator to Pl and apply a onevolt peak-to-peak signal. For test purposes, set Sl so that the first three switches are off, the next three are on, and the last two are off (00011100). Also, set the generator's frequency to 138 Hz . If everything is working correctly, the seven-segment LED's should display a value of 60 . and at least some of the discrete LED's should be lit.

Installation

The most difficult part of construction is installing the speedometer in an automobile. The two main tasks are installing the PC-board assembly and installing the magnetic sensor and magnets.

To install the boards, first choose a suitable mounting location for the unit, one that provides a good view of the device, but does not obstruct the driver's field of vision. After choosing your mounting location, prepare it to receive the speedometer. Whether you are building a custom enclosure or planning to install the assembly in the dash, use a front panel that will both protect the display and make it readable in bright sunlight.

Smoked Plexiglass makes an excellent front panel, especially if it is lettered and masked. Masking is accomplished by painting the area not occupied by displays or LED's. The easiest method is to mask all areas that are occupied by displays and LED's on the back side of the front panel and then paint the back side of the panel with black spray paint. Apply several coats to ensure a uniform covering. After the paint dries, peel off the masking tape and install the front panel.

The next step is to secure the magnets to the driveshaft (or output shaft) and mount the pick-up coil to the body or chassis of the automobile. To do that, you'll probably have to drive your car up on ramps. If you do not have a set of ramps, borrow or buy a set. Never get under a car that is supported only by jacks. It's also a good idea not to work under a car alone.

After raising the car, find a suitable location for mounting the magnets. On rear-wheel-drive vehicles, the best location is at the front of the driveshaft, near the transmission. At that place the driveshaft has the least vertical movement, so the magnets will maintain a constant distance from the pick-up coil. To mount the magnets, locate them around the driveshaft at 90° intervals and secure them in some way. The magnets we used in our prototype come with a strap that simplifies installation; you can purchase the
set at a local auto-parts store or from the source mentioned in the Parts List.

On a front-wheel-drive vehicle, the magnets can be mounted reliably to the outer ring of the constant-velocity joint's dust boot near the transaxle. In that type of installation, there should be a metal strap on each side of the dust boot. Mount the magnets to the strap that is located nearest the transaxle, and secure the pick-up coil and its metal strip. If the boot is not easily accessible, the magnets may be mounted directly to the output shaft or one of the drive shafts, but be sure to place them where the least amount of vertical movement takes place.

Next mount the pick-up coil to the underside of the automobile using a strip of inch-wide metal. Ot course, the length of the strip and the locations of the mounting holes will depend on your installation. But you'll probably want to bend the strip so that the front of the mounting coil and its bolt are about $1 / 2$ inch from the magnets. Figures $7-a-7-d$ indicate several mounting schemes for driveshaft and transaxle installations.

After the magnets and pick-up coil are installed, run the signal wires from the pick-up coil through the fire wall to where the PC boards are located. Use plenty of wire ties or plastic tape. If you purchase the pick-up coil mentioned in the Parts List, you must replace its connector with a Molex-style connector.

Run a power wire from the mounting location to the fuse box and connect it to a circuit that is active only when the ignition key is in the on position. Remember to hook the ground wire to the chassis ground of the automobile.

Calibration

To calibrate the speedometer, first decide whether you want the readout to be in miles or kilometers per hour. The next step can be accomplished in several ways. You can either calculate the speed of your driveshaft as discussed in the text box, or you can use the trial-and-error method.

To use the trial and error method, have a friend drive on an open stretch of highway, and, while watching your old speedometer, try setting SI in different positions until the speedometer displays the correct value. Make sure your friend watches the road and his speed while you calibrate the speedometer! Next, have your friend drive at the "red line" speed, and set R34 so the first red LED lights up.

If the digital speedometer reads erratically while the vehicle is standing still, reduce the value of R6 from 470 ohms to 330 ohms or less. That reduces input sensitivity and prevents the unit from picking up electrical noise.

After calibration is complete, it's time for final installation. Mount the unit in its permanent housing, then secure and conceal all cables.

R-E

PANASONIC CABLE CONVERTERS, Wholesale and Retail. Scientific Atlanta and Pioneer Cable Converters in stock. Panasonic model 130 N 68 channel converter \$79.95, Panasonic Amplified Video Control Switch Model VCS-1 \$59.95. Scientific Atlanta Brand new Model \#8528 550MHZ 80 Channels Converter \$89.95. Video Corrector (MACRO, COPYGUARD, DIGITAL) ENHANCER \$89.95. Write or call BLUE STAR IND., 4712 AVE. N, Dept 105, Brooklyn, NY 11234. Phone 1-718-258-9495.

CIRCLE 85 ON FREE INFORMATION CARD

SIMPLY SNAP THE WAT-50 MINIATURE FM TRANSMITTER on top of a 9 v battery and hear every sound in an entire house up to 1 mile away! Adjustable from $70-130 \mathrm{MHZ}$. Use with any FM radio. Complete kit $\$ 29.95+$ $\$ 1.50 \mathrm{~S}+\mathrm{H}$. Free shipping on 2 or more! COD add $\$ 4$. Call or send VISA, MC, MO DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CARD

LOOKSOUND FM SUNGLASSES. Super durable sunglasses with that great look. Each one has a state of the art micro FM radio built right in. Great for jogging, bicycling, boating, sports events, etc. $\$ 39.95$ plus $\$ 3.00$ shipping and handling. Visa, mastercard, and cod. 1-800-522-2636 for orders. (617) 843-1900 for information. CAMEO ENTERPRISES INC. P.O. Box 63 Accord, MA 02018
CIRCLE 89 ON FREE INFORMATION CARD

BUILD STEVE CIARCIA'S INTELLIGENT SERIAL EPROM PROGRAMMER. - Use Standalone or with Computer/Terminal; - Programs Standard or Fast Algorithm Mode; - Menu Selectable, No Configuration Jumpers; - Programs All 5V 27XXX EPROMs from 2716 to 27512. Includes CMOS and 12.5 V Vpp; Read, Copy, Verify after Write; • Intel Hex File Upload/Download. Full Programmer Kit $\$ 199.00$, Power Supply add $\$ 19.00$. S\&H $\$ 5$ in USA. CCI, 4 Park St., Suite 12, Vernon, CT 06066. (203) 875-2751.

CIRCLE 205 ON FREE INFORMATION CARD

CALL NOW AND RESERVE YOUR SPACE

- $6 \times$ rate $\$ 745.00$ per each insertion.
- Reaches 239,312 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at no additional charge.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS, RADIO-ELECTRONICS, 500B Bi-County Blvd., Farmingdale, NY 11735.

APPLIANCE REPAIR HANDBOOKS-13 volumes by service experts; easy-tounderstand diagrams, illustrations. For major appliances (air conditioners, refrigerators, washers, dryers, microwaves, etc.), elec. housewares, personal-care appliances. Basics of solid state, setting up shop, test instruments. \$2.65 to $\$ 5.90$ each. Free brochure. APPLIANCE SERVICE, PO Box 789, Lombard, IL 60148. 1-(312) 932-9550. CIRCLE 84 ON FREE INFORMATION CARD

MARKET CENTER

FOR SALE

RESTRICTED technical information：Electronic surveillance，schematics，locksmithing，covert sci－ ences，hacking，etc．Huge selection．Free bro－ chure MENTOR－Z，135－53 No．Blvd．，Flushing，NY 11354.

ROBOT！kits．Books and Plans！Learn to build your own robots．Free catalogs contain hundreds of af－ fordable robot systems．Explore the world of robotics today．Catalog：CEARGS－ROBOTS！，POB 458，Peterborough，NH 03458．（603）924－3843．
CB Tune－up manual Volume II．Specific adjust－ ments，modifications for peaking all popular CB＇s． Covers over 1300 radios．$\$ 19.95$ ，Visa，MasterCard to：THOMAS PUBLISHING，127－R Westwood， Paris，IL 61944.
CABLE TV equipment．All major brands．Spe cializing in Scientific Atlanta，Jerrold，and Zenith，add－ons．Our units have worked where others have falled．Send $\$ 3.00$ for catalog to K．D VIDEO，P．O．BOX 29538，MLPS，MN 55429

LATEST high－performance op－amps，power mosfets．First quality．Send stamped envelope fo list ANZA INSTRUMENT CO．，Box 60907，Palo Alto，CA 94306.
PROPAGANDA broadcast tapes！Authentic，rare recordings of WW－II shortwave braodcasts by ＂Tokyo Rose，＂＂Axis Sally，＂others．Cassette \＄9．95 D－W RESEARCH， 4548 Auburn Blvd．，\＃231－C Sacramento，CA 95841.
CABLE television converter，descrambler and wireless remote control video equip－ ment accessories catalog free．CABLE DIS－ TRIBUTORS UNLIMITED，116－Main Road， Washington，AR 71862.

WNUTS \& VOLTS Bo.	A 9es7a
M A G A 2 I N E 714－632－7721	Slutherrifothen Ret 15 FUMDS AFAMRE
GIVE YOURBELIF a iritak－A price briea	－UsA
NUTE $\%$ valss will Save you money	
ON ELECTRONIC PARTS E ERUIPMENT	Lireiner 9500
Clus show you where to find uniou	
UNUSUAL AND HARD－TO－FIND ITEMS．	
	Air Mail аЕІс： 1 Yi $\$ 50$
A Nationol Publication for the Buring And Selling	

WHOLESALE car－radio computer telephone audio video acessories antenna catalog（718）897－0509 D\＆WR，68－12 110th St．，Flushing，NY 11375
DESCRAMBLER catalog．Special combo Jerrold 400 and SB3 \＄165．Descrambler kit \＄39．00（assem－ bles in half hour）．Much more send $\$ 1.00$ ．MJ IN DUSTRY，Box 531，Bronx，NY 10461
TUBES！59q．Year guarantee．Free catalog．Tube tester \＄8．95．CORNELL．， 4215 University，San Di－ ego，CA 92105.
TI－99／4A software／hardware bargains．Hard－to－find items．Huge selection．Fast service．Free catalog DYNA，Box 690，Hicksville，NY 11801.
is it true．．．Jeeps for $\$ 44$ through the government？ Call for facts！ 1 （312）742－1142，ext． 4673
OLDTIME radio programs on high quality tapes． Comedy！Adventure！Music！Free catalog．CARL F． FROELICH，Heritage Farm，New Freedom，PA 17349.

LINEAR PARTS－transistors：MRF454 \＄15， MRF455 $\$ 12$ ，MRF477 $\$ 11$ ，MRF492 $\$ 16.75$ ， MRF421 \＄22．50，SRF2072 \＄13，SRF3662 \＄25， 3800 \＄18．75，2SC2290 \＄19．75，2SC2879 \＄25 Tubes：6KD6 \＄10．50，6LQ6 \＄9．75，6LF6 \＄9．75， $8950 \$ 16.75$ ．Best prices on Palomar road noise mics，Ranger AR3300．New 16 －page catalog listing radio／amplifier tricks－channel modification，PLL－ sliders，peaking for range，hard－to－find linear parts－mail $\$ 1.00$ to：RFPC，Box 700 ，San Marcos， CA 92069 ．For same day parts shipment，call（619） 744－0728．

TV tunable notch filters，free brochure D．K．VIDEO， Box 63／6025，Margate，FL 33063．（305）752－9202．

ZENITH，SSAVI，ready to go $\$ 100.00$ plus shipping， order C：O．D．1－（305）752－9202

CLASSIFIED AD ORDER FORM

To run your own classified ad，put one word on each of the lines below and send this form along with your check to：
Radio－Electronics Classified Ads，500－B Bi－County Boulevard，Farmingdale，NY 11735
PLEASE INDICATE in which category of classified advertising you wish your ad to appear．For special headings，there is a surcharge of $\$ 23.00$ ．
）Plans／Kits（ ）Business Opportunities
（）
）Education／Instruction（）Wanted（ ）Satellite Television （ ）

Special Category：$\$ 23.00$

PLEASE PRINT EACH WORD SEPARATELY，IN BLOCK LETTERS．

（No refunds or credits for typesetting errors can be made unless you clearly print or type your copy．）Rates indicated are for standard style classified ads only．See below for additional charges for special ads．Minimum： 15 words．

We accept MasterCard and Visa for payment of orders．If you wish to use your credit card to pay for your ad fill in the following additional information（Sorry，no telephone orders can be accepted．）：

Card Number
Expiration Date

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES．ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED．
CLASSIFIED COMMERCIAL RATE：（for firms or individuals offering commercial products or services）． $\$ 2.85$ per word prepaid（no charge for zip code）．MINIMUM 15 WORDS． 5% discount for same ad in 6 issues； 10% discount for same ad in 12 issues within one year；if prepaid．NON－COMMERCIAL RATE：（for individuals who want to buy or sell a personal item）$\$ 2.30$ per word，prepaid．．．．no minimum．ONLY FIRST WORD AND NAME set in bold caps at no extra charge．Additional bold face（not available as all caps）50c per word additional（ 20% premium）．Entire ad in boldface，add 20% premium to total price．TINT per word additional（ 20% premium）．Entire ad in boldace，add 20% premium to total price．TINT
SCREEN BEHIND ENTIRE AD：add 25% premium to total price．TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD：add 45% premium to total price．EXPANDED TYPE AD：$\$ 4.30$ per word prepaid．All other items same as for STANDARD COMMERCIAL RATE．TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD：add 25% premium to total price．TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD：add 45% premium to total price．DISPLAY ADS： 1 ＂$\times 21 / 4^{\prime \prime}-$ $\$ 320.00 ; 2^{\prime \prime} \times 21 / 4^{\prime \prime}-\$ 640.00 ; 3^{\prime \prime} \times 21 / 4^{\prime \prime}-\$ 960.00$ ．General Information：Frequency rates and prepay－ ment discounts are available．ALL COPY SUBJECT TO PUBLISHERS APPROVAL．ADVERTISEMENTS USING P．O．BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER．Copy to be in our hands on the 12th of the third month preceding the date of the issue．（i．e．，Sept．issue copy must be received by May 12 th ）．When normal closing date falls on Saturday，Sunday or Holiday，issue closes on preceding working day．

WE'LL MATCH OR BEAT ANYONE'S ADVERTISED RETAIL OR WHOLESALE PRICES!

SCIENTIFIC ATLANTA UNITS

LOWEST PRICES ANYWHERE!

ITEM	SINGLE UNIT PICE	DEALER $10-$ UNIT PRICE
RCA 36 CHANNEL CONVERTER (CH. 3 OUTPUT ONLY)	29.95	18.00 ea.
PIONEER WIRELESS CONVERTER (OUR BEST BUY)	88.95	72.00 ea.
LC=-58 WIRELESS CONVERTER	92.95	76.00 ea.
JERROLD 450 WIRELESS CONVERTER (CH. 3 OUTPUT ONLY)	105.95	90.00 ea.
SB ADD-ON UNIT	109.95	58.00 ea.
BRAND NEW - UNIT FOR SCIENTIFIC ATLANTA	Call for specifics	
MINICODE (N-12)	109.95	58.00 ea.
MINICODE (N-12) VARISYNC	119.95	62.00 ea.
MINICODE VARISYNC W/AUTO ON-OFF	179.95	115.00 ea.
M-35 B (CH. 3 OUTPUT ONLY)	139.95	70.00 ea.
M-35 B W/AUTO ON-OFF (CALL FOR AVAILABILITY)	199.95	125.00 ea.
MLD-1200-3 (CALL IF CH. 2 OUTPUT)	109.95	58.00 ea.
IN-ERFERENCE FILTERS - CH. 3	24.95	14.00 ea.
JE 2ROLD 400 OR 450 REMOTE CONTROLLER	29.95	18.00 ea.
ZENITH SSAVI CABLE READY (DEALER PRICE BASED ON 5 UNITS)	225.00	185.00 ea.
SFECIFY CHANNEL 2 or 3 OUTPUT \quad Other producis available - Please Call		

Quantity	Item	Output Channel	Price Each	TOTAL PRICE

California Penal Code \#593-D forbids us
from shipping any cable descrambling unit
to anyone residing in the state of California.

Prices subject to change without notice.
\qquad

Address	City	
State	Zip	
\square Cashier's Check	\square Money Order	\square COD

Acct \#_ Exp. Date ___

Signature
Exp. Date

FOR OUR RECORDS:

DECLARATION OF AUTHORIZED USE - I, the undersigned, do hereby declare under penalty of perjury that all products purchased, now and in the future, will only be used on cable TV systems with proper authorization from local officials or cable company officials in accordance with all applicable federal and state laws.

Dated:__._....... Signed:

ATTENTION looking for surplus test equipment signal generator voltmeter oscilloscope. J.B. ELECTRONICS, 9518 Grand, Franklin Park, IL 60131.
INTEL, RCA, National, OKI, SGS, and more. Factory prime and surplus parts catalog. LYNBAR INDUSTRIES, 205 Main, Box 822, St. Joseph, MI. 49085-0822.
TEST equipment, reconditioned. For sale. $\$ 1.25$ for catalog. WALTER'S, 2697 Nickel, San Pablo, CA 94806. (415) 724-0587

VIDEO Copier ($\$ 69.95$) connects between two VCR's (stereo) and makes copies as good as the original. For infolorder write or call VIDEO VIBES, 657 Allerion Ave., Bronx, NY 10467. Tel. (212) 653-4644
OLD radio TV schematics. Send $\$ 1.00$, make, model. RADIO MAPS, P O Box 791, Union City, CA 94587.

OSCILLOSCOPES and reconditioned test equipment. Teletronix, H.P., etc. Free list CAL-SCOPES, 983D Ponderosa Ave., Sunnyvale, CA 94086 (408) 730-4573.
WANTED: Western Electric, McIntosh, Marantz, RCA, Dynaco, Altec, Telefunken, JBL, tubes, speakers, amplifiers, (713) 728-4343. MAURY 11122 Atwell, Houston, TX 77096

LASERS, components and accessories. Free catalog, M.J. NEAL COMPANY, 6672 Mallard Ct., Orient, OH 43146.
CABLE TV converters. Scientific Atlanta, Jerrold, Oak, Zenith, Hamlin. Many others. "New" Video Hopper "The copy killer". Visa, M/C \& Amex accepted. Toll free 1-(800) 826-7623. B\&B INC., 10517 Upton Circle, Bloomington, MN 55431.
SATELLITE systems $\$ 349$ up. VISA/MC available. Catalog $\$ 3.00$. STARLINK, INC., 2603-16R Artie, Huntsville, AL 35805.
"BUGS" miniature transmitters, "James Bond"type spy gadgets. Catalog \$2.00 (refundable) CUDWELL, Salvisa, KY 40372-0034

PHONE RECORDER CONTROL

- Automatically records phone conversations when receiver is lifted.
- Interlaces your phone to any tape recorder
- Meets all FCC requirements.
- Guaranteed to work

Send 19.95 plus 3.00 shipping $\&$ handling to (VISA MASTER CHARGE, ORCOD)HO:ELECTRONIC DEVICES, 2429 Central Ave. St. Petersburg, FLA. 33173.
Dowler inquirioe wolcomed
OST's 1921-1985; some for 1917, 1919, 1920. CQ's 1945-1984. Make offer including postage. RadioElectronics, '50-64. MRS. RUTH E. SHEER, 429 Junell Drive, Sulphur Springs, TX 75482.

B\&K test equipment 25% discount selected scopes otherwise 20% on all products authorized distributor free catalog. CENTURY ELECTRONICS, 3511 North Cicero, Chicago, IL 60641.
ELECTRONIC test equipment and parts. Lowest prices. Free catalog. EF ELECTRONICS, Box 249 Aurora, IL 60507.
BUILD your own pro monitors 32 pg .5 part manual discloses design criteria utilized by major manufacturers of pro monitoring systems. Blueprints included! \$25.00 complete to: BRIX ENTERPRISES INC., 2419 Richmond Road, SIIN.Y. 10306.

MACROVISION eliminator video link 154. 1 year warranty! $\$ 69.00$ C.O.D.'s welcomed free info available. GMR ELECTRONICS, Box 2444, Titusville, FL 32781. (305) 267-2741
SCANNING disc television. Read all about it! "The Mechanics of Television." (1987) 182 pages $\$ 20.00$ postpaid TESLA ELECTRONICS, 835 Bricken, Warson Woods, MO 63122
MICROCONTROLLER clock-timer MCT 200 two programs: A.- 24 Hr , battery back-up clock with 4 time switches. B.- countdown timer with 4 outputs. A\&T $\$ 68.00$, kit $\$ 48.00$, manual only $\$ 2.00$. L.S. ELECTRONIC, 2280 Camilla Rd, Mississauga, Ontario, Canada L5A2J8.

FREE CATALOG
Our new 56 page catalog contains thousands of items that you need every day for do-it-yourself projects, product engineering, electronics repair and more. Call us today for your free copy and start saving!

HARDWARE AND ELECTRONICS

- 2 position, sotary type. Fully
shielded. FCC approved

TOROIDIAL TRANSFORNER		
- 120 volt primary, $2-20 \mathrm{~V}, 5 \mathrm{~A}$ secondaries • 41/2" round 4 lbs		
*120-150	$\$ 1250$	$\mathbf{5 9 9 5}$

300 PIECE CAPACITOR

 KIT

- A great assonment of differen values and working voltages
Includes electrolytics, ceram Includes electrolytics, ceramics,
mylars, and morel milas. and more

1020-920

CALL TOLL FREE 1-800-255-3525

In Ohio: 1-800-322-3525 Local: (513) 222-0173

Employers

Wiling workers available now at as little as $1 / 2$ your usual cost.

This is your chance to get help you've needed, but thought you couldn't afford.
No business too large or too small. Call your private industry council or write National Alliance of Business, P.O. Box 7207 . Washington, D C. 20044

FREE power supply with Assorment \#103 (February ' 84 article, has printed circuit, TOKO coils(4), 2N3904(2), BFQ85, 7812, 74123, MC1330, 1N914, 1N5231B. TELE-ASE-MAST ASSORTMENT \#301 (October Article) Printed Circuit with all IC's, transistors, diodes. Only $\$ 25.00 /$ each assortment. Five/\$112.50. Shipping $\$ 3.00$. 1 (800) 821-5226 Ext. 426. (orders). or write JIM RHODES INC., P.O. Box 3421, Bristol, IN 37625.

TUBES, name brands, new, 80% off list KIRBY, 298 West Carmel Drive, Carmel, IN 46032.

SPEAKER \& ELECTRONICS CAIALOG 1001 BARGAINS IN SPEAKERS
toll free 1-800-346-2433 for ordering only 1904 MCGEE STREET KANSAS CITY, MO. 64408

LEADER LF-945 signal level meter \$425.00. (312) 771-4661.

SUPERFAST morse code supereasy. Subliminal cassette. $\$ 10.00$ amazing mnemonics: Learn Morse Code in 1 hour; Q Signals supereasy; novice written exam supereasy! \$5.00 each. Moneyback guarantee. Free catalog: SASE. BAHR, 2549-E2 Temple, Palmbay, FL 32905.
TUBES. new, unused. Send self-addressed, stamped envelope for list. FALA ELECTRONICS, Box 1376-2. Milwaukee, WI 53201.
TUBES: "Oldest," "latest." Parts and schematics. SASE for list. STEINMETZ, 7519 Maplewood Ave. RE Hammond, IN 46324.
CABLE TV blowout viewstar 2501 volume, audio video ports, decoder loop. $\$ 129.95$ buy a decoder take off $\$ 10.00$, Star base decoder 1 coder take ohf $\$ 10.00$, Star base decoder
$\$ 99.00,10 \$ 75.00$, tri mode/bi state $1 \$ 100.00$, 10 $\$ 75.00$, MLD $1200-31 \$ 99.00,10 \$ 65.00, \mathrm{~N}-12$ replacement $1 \$ 99.00,10 \$ 61.00$, better than original auto on off boards $1 \$ 65.00,10 \$ 45.00$, Scientific Allanta decoder $1 \$ 140.00,10 \$ 104.00, \mathrm{Pi}$ oneer 5000 decoder $1 \$ 140.00,10 \$ 104.00$, much more. Call or write for your tree catalog (402) 331-4957. All products guaranteed 90 days. M.D. ELECTRONICS, 5078 So. 108th \#115, Omaha, NE 68108.
-
Eliminate the latest Video copyguard " DECODE A TAPE " units from $\$ 59^{95}$ to $\$ 169^{95}$
Deluxe Electronics ${ }^{1432 \text { Heim Wy, Orange, ca } 92665}$ (714) 998.6866

PLANS AND KITS

BUILD this five-digit panel meter and square wave generator including an ohms, capacitance and frequency meter. Detailed instructions $\$ 2.50$. BAGNALL ELECTRONICS, 179 May, Fairfield, CT 06430.

PROJECTION TV ..Convert your TV to project 7 foot picture. Results comparable to $\$ 2,500$ proiectors... Total cost less than $\$ 30.00$ plans and $8^{\prime \prime}$ lens $\$ 21.95$...Illustrated information FREE...MAC-ROCOMA-GK, Washington Crossing, PA 18977. Creditcard orders 24hrs (215) 736-3979.
TOP QUALITY imported, domestic kits, surplus, discount electronics, computer components. FREE catalog. TEKTRASONIX, 1120 Avenue of the Americas, $1 / 1$ suite 4038 , New York, NY 10036.

HI-FI speaker systems, kits and speaker components from the world's finest manufacturers. For beginners and audiophiles. Free literature. A\&S SPEAKERS, Box 7462, Denver, CO 80207. (303) 399-8609

VOICE disquisers! FM bugs! SWL active antenna! Receivers! More! Catalog $\$ 1.00$ (refundable): XAND \mid ELECTRONICS, Box 25647, Dept. 60M, Tempe, AZ 85282

PAC-TEC enclosure specified in Feb. "87 R-E article on Tri-Mode. Pre-drilled. $\$ 24.95$ plus $\$ 2.50$ S\&H VISA/MASTERCARD accepted. Call (617) 339-1026 or send to THE HOBBY HELPER, P.O Box 308, Bridgewater, MA. 02324
ULTRASONIC pest reveller: Exceptional design Complete quality kit $\$ 25.00$, assembled $\$ 30.00$ UFO DETECTING BOOK: Electronic projects, thepries, schematics, $\$ 6.00$ (NY $+7.5 \%$). UFONICS Box 1847-R, W. Babylon, NY 11704.
WHY not build something interesting? Easily constructed circuit lets you use any TV as a simple oscilloscope. No modifications to TV necessary! Low parts count. Detailed plans $\$ 4.95$ SCOPE, Box 3543, Williamsport, PA 17701
MELODY IC, Piezo element and application sheet only $\$ 3.00$. BELL CERAMIC INDUSTRIES, INC. 31 Passmore Avenue, Unit 28, Toronto, Ontario Canada M1V4T9

RGAOYES VOCALS FROM RECORDS! Now You can sing with the world's best bands! The THompson Vocal Eliminator can remove most or virtually all of a lead vocal from a standard stereo record and leave the background!

Write or call for a free brochure and demo record.
LT Sound, Dept. R-1, P.O. Box 338,
Stone Mountain, GA 30086 (404) 493-125:

STRANGE stuff. Plans, kits, new items. Build sate lite dish $\$ 69.00$. Descramblers, bugs, adult toys Informational photo package $\$ 3.00$ refundable. DIRIJO CORPORATION, Box 212, Lowell, NC 28098.
TELEPHONE. Electronic ring generator. Schematic $\$ 3.00$. For testing or experimentation COMPUTEC, 141 Greenvillage, Northport, AL 35476.
SATELLITE descrambling manual, Video Cypher II. Schematics, thorough explanation of digital audio encoding, EPROM code, DES. (HBO, Cinemax, Showtime.) $\$ 10.95+\$ 1.00$ postage. Catalog $\$ 1.00$ CABLETRONICS, Box 30502R, Bethesda, MD 20814.

WIRELESS remote cable converters $\$ 60.00$ with purchase of selected video kit. $\$ 50.00$ boards and parts for video and hobby projects from magazines and other sources. SA turn on kit $\$ 40.00$. Video dechipher kit $\$ 75.00$. Call or write for list and details. WIZARD, 1-(419) 243-7856, 24 East Central, Toledo, OH 43608

INFRARED kits, complete line of engineering and surveillance viewers, infrared light sources, infrared filters. Send $\$ 1.00$ to IRSCIENTIFIC, INC., Box 110 , Carlisle, MA 01741

DESCRAMBLING, New secret manual. Build you own descramblers for cable and subscription TV. Instructions, schematics for SSAVI, gated sync sinewave. (HBO, Cinemax, Showtime, etc.) $\$ 8.95$ $+\$ 1.00$ postage Catalog $\$ 1.00$. CABLETRONICS, Box 30502R, Bethesda, MD 20814
CRYSTAL radio sets, plans, parts, kits, catalog \$1.00. MIDCO, 660 North Dixie Highway, Holt lywood, FL 33020.
CATALOG: hobby/broadcasting/1750 meters/ham/ CB: transmitters, antennas, scramblers, bugging devices, more! PANAXIS, Box 130-F7. Paradise. CA 95967
FREE catalog 99-cent kits-audio, video, TV, computer parts. ALLKIT, 434 W. 4th St., West Islip, NY 11795.

CABLE television converter, descrambler and wireless remote control video equipment ac cessories catalog free. CABLE DISTRIBUTORS UNLIMITED, 116-P Main Road Washington, AR 71862.

EDUCATION \& INSTRUCTION

F.C.C. Commercial General Radiotelephone license. Electronics home study. Fast, inexpensive! "Free" details. COMMAND, D-176, Box 2223, San Francisco, CA 94126.
FCC commercial general radiotelephone license correspondence course. 60 individual lessons for $\$ 89.50$. Payment plan. Results guaranteed! Details free. AMERICAN TECHNICAL INSTITUTE, Box 201, Cedar Mountain, NC 28718

GREAT VALUES • FAST SHIPPING•QUANTITY DISCOUNTS

150MC Universal Digital

STEREO PRE-MAIN AMPLIFIER

INFRARED REMOTE CONTROL UNIT

HIGH QUALITY
PREAMPLIFIER WITH 10 BAND EQUALIZER

NEW with a with stage
CAN BE SWITCHED\}

1-800-423-3483
INFORMATION: 1-818-282-1196 MAIL ORDER: POO. BOX 6610

TOLL FREE

only for order paid by Master or Visacard IN CAL.: 1-800-521-MARK

ALHAMBRA,
CA91802

SATELLITE TV

CABLE TV Secrets- the outlaw publication the cable companies tried to ban. HBO, Movie Channel, Showtime, descramblers, converters, etc. Suppliers list included $\$ 8.95$. CABLE FACTS, Box 711 R, Pataskala, OH 43062.

Cable TV Converters
 Why-Pay A High Monthly Fee?

 Jerrold Products include "New Jerroid Tri-Mode," SB-3, Hamlin, Oak VN-12, M-35-B, Zenith, Magnavox, Scientific Atlanta, and more. (Quantity discounts) 60 day warranty. For fast service C.O.D. orders accepted. Send SASE (60 cents postage) or call for info (312) 658-5320. Midwest Electronics, Inc./, HIGGINS ELECTRONICS, 5143-R W. Diversey, Chicago, IL 60639. MC/ Visa orders accepted. No Illinois orders accepted. Mon.-Fri.-9 A.M.-6 P.M.CSTSATELLITE TV receiver kits! instructions! Schematıcs! Catalog $\$ 1.00$ (refundable): XANDI ELECTRONICS, Box 25647, Dept. 21P, Tempe, AZ 85282
DESCRAMBLER build our low cost satellite TV video only descrambler for all major movies and sports. Uses all Radio Shack parts. Order P.C. board and instructions by sending cheque, money order, or Visa for $\$ 35.00$ U.S. funds to: Valley MICROWAVE ELECTRONICS, Bear River, Nova Scotia, Canada, BOS-1BO. (902) 467-3577.
$101 / 2 \mathrm{ft}$ satellite system, remote controlled, tracker, and descrambler with 1 yr free subscription to 20 channels. $\$ 14.95$ plus UPS. Visa or Master Card accepted. 1-(602) 378-6275

Quality Microwave TV Antennas

12-channel system $\$ 99.95$ (ptus shipping) 2-channel system $\$ 79.95$ (plus shipping) 40dB Gain 1.9 to 2.7 Ghz
Dealerships, Oty. PricIng, Replacement Parts
Ptillilos-Tech Electronics
P.O. Box 8533 - \&cottsdate, AZ 85252

LIFETIME (602) $947-7700$ (53.00 Credilall phone orders!|
WARRANTY MasterCard - Visa -COO s

VIDEOCIPHER data disk, Apple II and PC, dial (011)(52) (451)42268 (Mexico), 4-10 PM. CST. for information.
VIDEOCIPHER turn ons, bypasses, schematics Complete information. Order now. Only $\$ 20.00$ GILMORE, Route 3, Old Town, FL 32680
CABLE converters compatable with all systems. Guaranteed lowest prices, immediate delivery, call now!!! (516) 795-0643.

CONSULTING SERVICES

DIGITEK turns your ideas into hardware. Design and/or prototyping. Send SASE for free feasibility and cost analysis. No job too small. DIGITEK, Box 195 Levittown, PA 19059. (215) 949-2260.

COMPUTERS

NEWII INSTALLATION and REPARR of VideoClpher 2000 and 2100

The Only VCR Instructional Video Program

Demonstrating

Normal \& Speciail Installation - Setting External
Controls Preforming Internal Adjustments
Problems - Replacing Ports Covered by Epory

- Static Precautions \& Special Soldering Techniques. Using PROTEC; the electronic test device for the professional TVRO dealer
Everything you've wanted to know shown for the first time, for only $\$ 59.95$ ShipDing $\$ 2.50$. Send check or ddd $\$ 2.50 \mathrm{COO}$ (Casht, certified checkor MC on COD) No credit cad, terms, D's. N.Y sdd 8% tox

TRVO dealers receive $\$ 10.00$ rebate towards 1 st purchase of PROTEC plus discounts worth more than $\$ 50.00$ on soldering equipment and accessorles. IESTRON, Inc.
dept R1, 184 Jericho Tumpike Floral Park NY 11001 800-281-1009 ext. $30194 \mathrm{hrs}-7$ days (in NY) 516-358 9414

WANTED

INVENTORS! AIM wants-ideas, inventions, new products, improvements on existing products. We present ideas to manufacturers. Confidentiality guaranteed. Call toll free 1-(800) 225-5800 for information kit.
INVENTIONS, ideas, new products wanted! Industry presentation/national exposition. Call free 1-(800) 528-6050. Canada, 1-(800) 528-6060 $\times 831$
WANTED surplus inventories of ICs, transistors etc. No quantity too small or large. Call WESTERN TECHNOLOGY, (303) 444-4403. FAX (303) 444-4473.
MICRO-Electronic manufacturing business or individual engineer/hobbyist for help in design and/or production of receiver write OEO, 4218-Bunker Hill, Bettendorf, IA 52722, (319) 355-2927

INVENTORS

INVENTORS! Can you patent and profit from your idea? Call AMERICAN INVENTORS CORPORATION for free information. Over a decade of service. 1-(800) 338-5656. In Massachusetts or Canada call (413) 568-3753

BIG
PROFITS
ELECTRONIC ASSEMBLY BUSINESS

Start home spare time. Investment knowledge or experience unnecessary BIG DEMAND assem-

 bling electronic devices. Sales handled by professionals. Unusual business opportunity.FREE: Complete illustrated literature BARTA. RE-O Bux 248
Walnut Creek. Callf. 94597

BUSINESS OPPORTUNITIES

MECHANICALLY inclined individuals desiring ownership of small electronics manufacturing busi-ness-without investment. Write: BUSINESSES, 92-R, Brighton 11th, Brooklyn, NY 11235.
PROJECTION TV ...Make \$\$\$'s assembling projectors ..easy...results comparable to $\$ 2,500$ projectors. Total cost less than $\$ 30.00$ PLANS, 8 ectors Total cost ins than $\$ 30.00$. PLANS, 8
LENS and dealers information $\$ 20.50$. Illustrated information free. MACROCOMA-GKX, Washington Crossing, PA 18977. Creditcard orders 24hrs. (215) 736-2880.
EASY, lucrative. One man CRT rebuilding machinery. Free info: (815) 459-0666 CRT, 1909 Louise, Crystalake, IL 60014.
YOUR own radio station! AM, FM, cable. Licensed or unlicensed. BROADCASTING, Box 130-F7. Paradise, CA 95967
CRT equipment rebuilds Sony/color tubes/other. CRT SYSTEMS, 633 North Semoran, Orlando, FL 32807. Call (305) 275-9543.

PERSONAL computer owners can earn $\$ 1000$ to $\$ 5000$ monthly offering simple services part time. Free list of 100 services. Write: C.I.L.G.B., P.O. Box 60369, San Diego, CA 92106-8369.

PAY TV ANO SATELLITE DESCRAMBLING NOW 120 PAGES!
Theory and working schematics. 13 cable and 7 satelite systems.
Turnons. detection. countermeasures $\$ 14.95 .20$ Page Sunolement Only $\$ 8.95$. Experments with Videocipher Turnons. Cloning procedures. $\$ 12 \frac{\text { Experments }}{95}$ Cable IV Designe security systems. $\$ 1295$ MDS MMDS Handbook For MIcrowave Hackers $\$ 9.95$. Build Satellite Sys-
Shems Under $\$ 600$ Sile $\$ 12.95$ Any $3 / \$ 26$ Summer catalog $\$ 1$.
Shojki Elecironics Corp. 1327A Niagara St.,
Niagara Fails, NY 14303. COD's 716-284-2163

TV sales \& repair shop. Cape Coral, FL, exclusive Sylvania sales and service, 16 years same location, total price $\$ 85,000$. Unbelievable net, call John Thompson, Realtor-Associate, CENTURY 21 AAIM REALTY GROUP, INC., Out-of-Florida 1-800-237-3342, in Florida (813) 337-1121

BUY direct from Taiwan, Singapore, and Hong Kong! Send SASE for details. BUY DIRECT, 51 SW 69th Avenue, Miami, FL 33144-2809.

SCIENTIFIC ATLANTA \& SB-3

SCIENTIFIC Atlanta cable converters (original units), models- 8500 and 8550 , remote control... \$240.00. SB-3's .. \$74.00. TRi-Bi's...\$95.00. SBSA-3's... $\$ 99.00$. Zenith (Tag-ons)... $\$ 159.00$. Jerrold-450 converters... \$95.00. Dealer discount on (5) units Call N.A.S., (213) 631-3552.

NOTCH FILTERS

THE Positrap Cookbook: build $50-60 \mathrm{~dB}$ notch filters for pennies. Construction, allignment, fixed, tunable, trimable Comprehensive Cable TV scrambling and descrambling theory and practice. Identifying various systems. $\$ 9.95$ CLEARVIEW CABLE COMPANY, P.O. Box 207, Sterling Heights, MI 48311.
NOTCH filters for any channel. Send $\$ 15.00$ for sample unit. Specify output channel of converter Money back guarantee. DB ELECTRONICS, P.O. Box 8644, Pembroke Pines, FL 33084

CB RADIO OWNERS!

We specialize in a wide variety of technical information, parts and services for CB radios. 10MFM conversions, repairs, books, plans, kits, high-performance accessories. Our 11th year! Catalog \$2.
CBC•NTEANATONAE, PO MOIX 3T1300RE PHOENIX, AZ 85046

DO IT YOURSELF TV REPAIRS

NEW...REPAIR ANY TV...EASY. Retired serviceman reveals secrets. Write RESEARCH, Rt. 3 , Box 601B, Colville, WA 99114.

CABLE TV DESCRAMBLERS

CABLE television converter, descrambler and wireless remote control video equipment accessories catalog free. CABLE DISTRIBUTORS UNLIMITED, 116-C Main Road, Washington, AR 71862.

IBM-PC SOFTWARE

COMPDES-computer-aided circuit design, selections from basic electricity to circuit designs. Very educational. $\$ 49.95$ (614) 491-0832. ESOFT SOFTWARE, 444 Colton Road, Columbus, OH 43207.

THIS IS AN EXPANDED TYPE AD. Notice how it stands out on this page. To get your ad set in this type style mark your classified ad order, "Expanded-type ad," and calculate your cost at $\$ 3.75$ per word.

We warehouse 60,000 items at American Design Components - expensive, often hard-to-find components for sale at a fraction of their original cost! You'll find every part you need - either brand new, or removed from equipment (RFE) in excellent condition. But quantities are limited. Order from this ad, or visit our retail showroom and find exactly what you need from the thousands of items on display

Open Mon. - Sat., 9-5

THEREPS NO RISK. With our full 90-day warranty.

 any purchase can be returned for any reason for full credit or refund.PC 8300 HOME COMPUTER
(Advanced version of the Timex 1000)
 Reverse video, $280 \mathrm{~A}, 6.5 \mathrm{MHz}$ processor, ROM 8K BASIC. Graphics capability/sound music, TV or monitor. Joystick input operates on 115 VAC . Includes: AC adapter, TV cable, and pair of cassette cables. Will run all cable, and pair of cassette cables. Will run al-
prerecorded tapes for Sinclair/Timex 1000 2X81. Mir - Power 3000. In orig, boxes. Item \& $10336 \quad \$ 29.95$ New Accessories.

* 16K RAMPACK upgrade Item \#10337 \$9.95 New
* 32K RAMPACK upgrade Item \#12148 \$19.95 New
* COLOR PACK

Item \#12147 \$19.95 New
ADAM Computer Parts.
$\star \star$ NEW $\star \star$
ADAM LINK MODEM
(w/o Sotware) Item \#12358 \$29.95 ADDRESS BOOK FILER SOFTWARE W/AUTO DIALER

Item \#12365 \$19.95
$\star \star \star \star+$ ADAM COMPUTER KIT
(Less printer.) Includes: Keyboard, digital data drive, 2 game controllers, power supply, all memory boards, and one cassette. No wiring necessary; hookup diagram included Item \#7410 \$99.00

COLECOVISION to ADAM

EXPANSION KIT

Plugs into your ColecoVision. With printer power supply \& one data drive, you will have a working Adam Computer. Keyboard \& one Smart Basic cassette also included.

Item \#9918 \$59.50

DATA DRIVE-

Item \#6641
LAST CHANCE - $\$ 19.95$
PRINTER POWER SUPPLY
Item \#6642 \$14.95
ASCII KEYBOARD-
Item \#6643 \$19.95

ADAM CASSETTES

(Consisting of Buck Rogers \& Smart Basic only.) Item \#7786 BAKER'S DOZEN - \$19.95
CONTROLLERS

48/96 TPI
(IBM ${ }^{\oplus}$ Compatible) Double sided, single/double density; 80 track
Mir - Panasonic \#JU-475
tem \#10005 \$129.00 New

SPECIAL!
$115 \mathrm{VAC} / 60 \mathrm{~Hz} ., 21 \mathrm{~W} ., 28 \mathrm{~A}$. 3100 RPM: 5-blade model, aluminum housing. Can be mounted for blowing or exhaust. Dim.: $4^{11 / 1 / s^{\prime \prime}}$ sq. $\times 11 / 2$ "deep.

SWITCHING POWER SUPPLY

$115 \& 230 \mathrm{~V}, 47-440 \mathrm{~Hz}$. Input: 90-135V/180-270t
Output: 5 VDC 055 A Output: $\begin{array}{r}\text { 5VDC @ } \\ +12 \text { VDC } \\ -12 \mathrm{~A}\end{array}$ 12 VDC @.4A
$12 \mathrm{VDC} @ .3 \mathrm{~A}$ Perforated metal case enclosure Dim.: $91 / 2^{\prime \prime} L \times 3^{1 / 2}{ }^{\prime \prime} W \times 2^{\prime \prime} \mathrm{H}$. Mfr General Instrument Mfr - General Instrument
Itern \#7983 $\$ \mathbf{\$ 1 4 . 9 5} \mathrm{New}$

115 VAC
27 C
MINI
FANS
$50 / 60 \mathrm{~Hz}$
12 W . Low noise
level fans, can be
mounted for blowing or exhaust. 1 " Thin: contains 9 plastic blades Dim, $31 /{ }^{\prime \prime \prime}$ sq. $\times 1^{\prime \prime}$ deep
Item \#10960 \$7.95 New $11 / 2^{\prime \prime}$ Standard: contains 7 $11 / 2 "$ Stand
metal blades.
metal blades.
Mfr - Rotron \#SU2A1
Mfr - Rotron \#SU2A1
Item \#5970 \$7.95 New
COMPUTER GRADE
POWER SUPPLY

Other uses-runs CB \& car radios. Comes ready to plug in!
DC Output: \quad 5V@.5 amp. 5V@3 amp. Input $115 \mathrm{~V} / 60 \mathrm{H}$. Dim. $91 / 4$ "W \times Input $115 \mathrm{~V} / 60 \mathrm{H}$. Dim.. $9^{1 / 4} " \mathrm{~W} \times$
$3^{1 / 4} \mathrm{H}$. (Rubber ft . incl.)

51/4"

FULL
HT.
DISK
DRIVES
48 TPI
(IBM ${ }^{\text {® }}$
Compat.)
Double sided/double density, full
height drive $48 \top$ P 80 tracks height drive. 48 T.P...., 80 tracks Item \#7928 \$79.95 2 for $\$ 150.00$ 96 TPI, DS/Quad Density

1-PIECE
TELE-
PHONE
\& mute number redial \& standard modula \& standard modular plug. vory. Mfr- Spectra-phone,
Model OP-1. tem \#10748 \$8.95; 2 for $\$ 15.00 \mathrm{New}$ 190W AUXILLIARY DISK DRIVE POWER SUPPLY

Input: 115 V
Output: + 12V@4.13A $) \times 3$ (Requires 5 V from primary power Requires 5 V from primary power supply to turnon. 3 sets of dual out puts for simult. operation of 3 drive
Designed for the AT\&T computer. Designed for the AT\&T computer Mfr - Todd Products

ANALOG

to DIGITAL
CONVERTER

Binary output: 12 bit; Conversion time: 8 ms . Linearity: $8 \mathrm{~ms} . \pm 1 / 2$ lbs. Parallel and series outputs; inernal reference.
 Mir - Datel ADC-HZ-12BGC Item \#7052 (RFE, tested goood! Originally $\$ 130.00$ Special - $\$ 39.95$

DOS 3.2 Compatible 96 TPI, DS/QUAD DENSITY Tandon TM55-4 DS/Quad

Item \#1904 \$79.00 2 for $\$ 150.00$

MICROCOMPUTER with EPROM

MC68701 is an 8-bit single chip unit \& signiticantly enhances the capabilities of the M6800 family includes an upgraded MC-6800 monolythic microcomputer or can be expanded to a 64 K byte address space. TTL comp. Req.: $1+5 \mathrm{~V}$ power supply for nonprogramming operation. On chip resources: 2048 bytes of eprom, 128 bytes RAM. 'SCSI,' parallel, I/O \& 3-function programmable timer Item \#9496 \$9.95 (house

PUMPS-COMPRESSORS-BLOWERS-MOTORS-POTENTIOMETERS-COUNTERS TIMERS-RELAYS-VOLTAGE RECULATORS-POWER SUPPLIES

AT-STYLE COMPUTER CABINET

Contains 10 full-length expansion slots ($\mathrm{w} / \mathrm{guides}$). With room for an internal $5 y^{\prime \prime}$ hard disk drive. Has 3 half-height disk drive slots. Rear on/off switch, notched to hold in power supply (not inci.). and security switch w/key.
Item $\# 12266 \quad \$ 49.95$ New

Insides of the	$12^{\prime \prime}$, High Resolution
Commodore Computer	TTL MONITOR

Commodore VIC 20 CPU board \& mechanical keyboard. Guaranteed not to work. (For parts only.)
Item \#12144 \$14.95 RF

12", High Resolution

15" COMPOSITE VIDEO MONITOR

15", green phosphor, high resolution (12 lines center) and band width from 10 Hz to $30 \mathrm{~Hz} \pm 3 \mathrm{~dB}$ Operating volt.: $120 / 240 \mathrm{VAC}$. $50 / 60 \mathrm{~Hz}$., 65 VA max.
Mfr - Motorola - Alpha Series Item \#10044 \$34.95 New AMERICAN DESIGN COMPONENTS, 62 JOSEPH STREET, MOONACHIE, N.J. 07074 MINIMUM

YES! Please send me the following items:

\square My check or money order is enclosed.
\square Charge my credit card.
\square Visa \square Master Card \square Amex
Card No.

Exp. Date

Signature

Telephone: Area Code Number
Name
Address
City \quad Zip
State
All inquiries and free catalog requests call 201-939-2710.

For all phone orders, call TOLL-FREE 800-524-0809. In New Jersey, 201-939-2710.

$\star * * *$ HIGM-TEGH $* * *$ HEC V2O UPD70108 811^{95}
REPLACES 8088 TO SPEED UP IBM PC 10-40 0

* HIGH-SPEED ADDRESS CALCULATION IN HARDWARE
* PIN COMPATIBLE WITH 8088
* SUPERSET OF 8088 INSTRUCTION SET LOW POWER CMOS
8MHZ V2O UPD70108-8 \$13.95 8MHZ V30 UPD70116-8 \$19.95 $\star \star \star \star$ SPOTLIGHT $\star \star \star \star$

ORDERTOLL FREE 600-536-5000

VISA
VISA
MaslerCard

EPROMS			
2708	1024×8	(450ns)	4.95
2716	2048×8	(450ns)(5V)	3.4
2716-1	2048×8	(350ns)(5V)	3.9
TMS2532	4096×8	(450ns)(5V)	5.95
2732	4096×8	(450ns) $(5 \mathrm{~V})$	3.95
2732A	4096×8	(250ns)(5V)(21V PGM)	3.95
2732A-2	4096×8	(200ns)(5V)(21V PGM)	4.25
$27 \mathrm{C64}$	8192×8	(250ns)/(5V)(CMOS)	5.95
2764	8192×8	(450ns)(5V)	3.49
2764-250	8192×8	(250ns)(5V)	3.95
2764-200	8192×8	(200ns)/5V)	4.25
MCM68766	8192×8	(350ns)(5V)/24 PIN)	17.95
27128	16384×8	(250ns)(5V)	4.25
27C256	32768×8	(250ns)/(5V)(CMOS)	10.95
27256	32768×8	21V PGM=Program at 21 Voths	
5V=Single 5	Supply		

VISECTRONICS EPROM ERASERS

EPROMS

$\mathbf{8 2 0 1}$	
8203	24.95
8205	3.29
8212	1.49
8216	1.49
8224	2.25
8237	4.95
8237.5	5.49
8250	6.95
8251	1.69
82514	1.89
8253	1.89
8253.5	1.95
8255	1.69
$8255-5$	1.89
8259	1.95
8259.5	2.29
8272	4.95
8279	2.49
8279.5	2.95
8282	3.95
8284	2.95
8286	3.95
8288	4.95

2-80
280-CPU 25 MHz 1.69
4.0 MHz

280A-CPU
280A-CTC 280A-CTC
Z8ART 280A-DMA 280A.PIO $280 \mathrm{~A}-\mathrm{Sl} 10 / 0$
$280 \mathrm{~A}-\mathrm{S} 10$

z 6.0 MHz \begin{tabular}{l}
280B-CPU

280 CT

\hline 1

 280B-PIO

Z80B-DART

Z80B-SIO

\hline

280B-S10/2 \& 12.95

\hline 2951 \&
\end{tabular}

$\begin{aligned} & \text { GRT } \\ & \text { CONTROLLERS } \end{aligned}$	
6885	${ }_{8.95}^{4.95}$
	-11.95
MC1372	${ }_{2}{ }^{2.95}$
${ }_{7220}^{8275}$	- 26.95
CRT5027	12.95
${ }_{\text {CRTT5037 }}^{\text {CMS9918A }}$	-9.95

2.0 MHz
$\begin{array}{lr}6502 \mathrm{~A} & 2.95 \\ 6520 \mathrm{~A} & 2.95 \\ 6522 \mathrm{~A} & 5.95 \\ 6532 \mathrm{~A} & 11.95 \\ 6545 A & 7.95 \\ 6551 A & 6.95\end{array}$
3.0 MHz

$\begin{gathered} 6800 \\ 1.0 \mathrm{MHz} \end{gathered}$	
6800	1.95
${ }_{6803}^{6802}$	${ }_{9}^{4.95}$
${ }_{6809}$	5.95
${ }_{6810}^{6898}$	5.95
${ }_{6820}$	1.95
6821	1.95
${ }_{6843}^{6840}$	\%6.95
${ }_{6844} 6883$	${ }_{\text {12, }}^{125}$
6845	4.95
6847 6850	11195
${ }_{6883}$	22.95
2.0 MHz	
${ }_{68800}$	
${ }_{\text {ckibege }}^{68802}$	5.95
${ }_{68899}$	6.95
${ }_{68885}^{68829}$	3.95
68850	${ }^{2} 2.95$
${ }_{68854}^{6885}$	7.95

SOUND CHIPS
 76477 76489 SSI-263
 AY3-8910 $\begin{array}{ll}\text { SP1000 } & \mathbf{3 9 . 0 0}\end{array}$

CONISK	
7771	${ }_{9.95}^{4.95}$
1791	9.95
1797	
${ }^{2793}$	${ }^{19} 9.95$
¢6833	19.955
	${ }^{\text {a }}$
M68877	${ }^{1295}$

\section*{BIT RATE GENERATOR ${ }_{\text {BR1941 }}^{\text {MC }}$ | 8702 |
| :--- |
| com |
| com |
 MM5307}

UARTS	
AY5-1013	3.95
TR1602	4.95 3.95
${ }_{\text {LM }}^{265102}$	4.95 6.95
IM6403	-959,
iNS8250	6.95
SOUND CHIPS	
${ }_{7}^{764778}$	¢8.95
sst-263	3995
AY38910	12.95
	12.95 39.00

Visit our retail store located at 1256 S . Basces
110 Knowles Drive, Los Gatos, CA 95030 Toll Free 800-538-5000 • (408) 866-6200 FAX (408) 378-8927 \bullet Telex 171-110

COPYRIGHT 1987 JDR MICRODEVICES

DISK DRIVES
FOR APPLE COMPUTERS

AP-150

 $\$ 99.95$
2 HT. DIRECT DRIVE

100% APPLE COMPATIBL

AP-135
$\$ 129.95$
FULL HT SHUGART MECHANISM DIRECT REPLACEMENT FOR APPLE SIX MON

OOUBLE
SIDED!
MAC535
\$249.95

3.5" ADD-ON DISK DRIVE 100% MACINTOSH COMPATABLE DOUBLE SIDED 800K BYTE STORAGE HIGH RELIABILITY DRIVE
HAS AUTO-EJECT MECHANISM FULI ONE YEAR WARRANTY

AD-3C $\$ 139.95$

100\%APPLE IGC COMPATIBLE
REAOYTOPLUGGN. WSHIELDED
CABLE MOLDED 19 PIN
CONNECTOR CONNECTOR FAST

DISK DRIVE ACCESSORIES
FDD CONTROLLER CARD
$\$ 49.95$
IIc ADAPTOR CABLE
$\$ 19.95$
ADAPTS STANDARD APPLE DRIVES
KB-1000
$\$ 79.95$
FOR APPLE TYPE MOTHERBOARD USER DEFINED FUNCTION KEYS NUPS LOCK

KEYBOARD-AP

$\$ 49.95$

- REPLACEMENT FOR APPLE II KEYBOARD CAPS LOCK KEY. AUYO-REPEAI
- COMMANOS

JOYSTICK ce-10 \$19.95
SET X-Y AXIS FOR AUTO CENTER OR FIRE MOVEMENT
SOF TWARE INCLUDES ADAPTOR CABTIC CASE APPLE II. IIE. II C. ATARI \& VIC 20/64

POWER STRIP

\$12.95

* UL APPROVED * 15A CIRCUIT BREAKER

GRT MONITORS FOR ALL APPLICATIONS

aPPLE COMPATIBLE INTERFACE CARDS

EPROM PROGRAMMER

DUPLCATE OR BURN
(2716 TO 27128)
MENU DRIVEN SOFTWARE HIGH SPEED WRITE ALGO.

RP-525 $\quad 59995$

16K RAMCARD FUiL 2 YEAR WARAANTY EXPAND YOUR 48K MACHINE
TO A FULL 64 K OF MEMORY CAN BE USED IN PLACE OF CAN BE USED IN PLACE OF
THE APPLE LANGUAGE CARD

IC TEST CARD QUICKIYTESTS MANY COMMONICS
DISPLAYS PASS OR FAII TEST $4000 \& 74$ HC SERIES CMOS. $7400,74 \mathrm{LS}$, 74 L

C-TESTER \$129

MOLDED INTERFACE CABLES

IBM PARALLEL PRINTER C ABLE CENTRONICS (MALE TO FE MALE
CENTRONICS (MALE TO MALE) MODEM CABLE (FOR IBM) RS232 SERIAL (MALE TO FEMALE RS232 SERIAL (MALE TO NALE) KEYBOARD EXTENDER (COILED APPLE II JOYSTICK EXTEWDER

SWITCH BOXES

ALL LINESSWITCHED GOLD PLATED
2 WAY $\$ 39.95$
CONNECTS 2 PRINTERSTO 1
COMPUTER OR VICE YERSA
AB-P (CENTRONICS PA.ZALLEL). AB-S (RS232 SERIAL)

3 WAY
$\$ 99.95$
CONNECTS 3 PR IVERS TO
COMPUTER OR VILE VERSA
SWITCH-3P (CENTRONCS PARALLEL)
SWITCH-3S (RS232 SEFIAL)

3008 MODEM

C. ITOH RITEMAN II PRINTER

160 CPS DRAFT, 32 CPS NLO
 9×9 DOT MATRIX
 FRICTION AND PIN FEEDS VARIABLE LINE SPACING AND PITCH
 $\$ 219.95$

IBM PAIRTER CABLE
REPLACEMEWT RIBEOM CARTRIOGE

NASHUA DISKETTES

NASHUA DISKETTES WERE JUDGED TO HAVE
THE HIGHEST POLISH AND RECORDED THE HIGHEST POLISH AND RECORDED
AMPUTUDE OF ANY DISKETTES TESTED (COMPARING FLOPPY DISKS, BYTE 9/84)
N-MD2D DS/DD $5 / /{ }^{\prime}$ "SOFT $\$ 9.90$ N-MD2F DS/QUAD 5% SOFT $\$ 19.95$ $\begin{array}{lrl}\text { N-MD2H } & \text { DS } / \text { HD } 5 / /^{\prime \prime} \text { FORAT } & \$ 24.95 \\ \text { N-FD1 } & \text { SS } / D D 8^{\prime \prime} \text { SOFT } & \$ 27.95\end{array}$ $\begin{array}{ll}\text { N-FD1 } & \text { SS DD 8" SOFT } \\ \text { N-FD2D } & \text { DS DO } 8^{\prime \prime} \text { SOFT } \$ 34.95 \\ & \$ 34.95\end{array}$ BULK DISKETTE SALE 5 $1 / 4^{\prime \prime}$ SOFT SECTOR, DS/DD W/TYVEC SLEEVES \& HUB RINGS $\$ 990$ 69Cea 59 Cea 80X OF 10 BULK OTY 50 日ULK QTY 250

DISKETTE FILES
$51 / 4$ " DISKFILE $31 / 2^{\prime \prime}$ DISKFILE
HOLDS 70 HOLDS 40

dSf Seagate

51/4" HARD DISK DRIVES
$\begin{array}{lll}\text { ST- } 225 & \text { HALF HT } 20 \mathrm{MB} 65 \mathrm{~ms} & \$ 275 \\ \text { ST-238 HALF HT } 30 \mathrm{MB} \mathbf{6 5 m s} \text { (RLL) } & \$ 299\end{array}$ ST-251 HALF HT $40 \mathrm{MB} 40 \mathrm{~ms} \quad \$ 599$ ST- 277 HALF HT GOMB 40 ms (RLL) CALL ST-4038 FULL HT 30MB 40 ms S559 ST-4096 FULL HT 8OMB 28 ms

1/2 HEIGHT FLOPPY DISK DRIVES

51/a" TEAC FD-55B DS/DD $\$ 109.95$ 51/4" TEAC FD-55F DS QUAD $\$ 124.95$ 51/"" TEAC FD-55GFV DS/HD $\$ 154.95$
 31/2" TOSHIBA KIT DS/DD $\$ 149.95$ KIT INCLUDES MOUNTING HARDWAR
FIT 5/4" \& FACEPLATES FOR AT \& XT

DISK DRIVE ACCESSORIES

TEAC SPECIFICATION MANUAL TEAC MAINTENANCE MANUAL MOT MNTG HARDWARE FOR IBM " Y " POWER CABLE FOR 51_{6}^{\prime} FDD 51/4"FDD POWER CONNECTORS

DISK DRIVE ENCLOSURES WITH POWER SUPPLIES

CAB-2SV5 DUAL SLIMLINE $51 / 4^{* *} \$ 4995$ CAB-1FH5 FULLHT 51/4" $\$ 6995$ CAB-2SV8 DUAL SLIMLINE 8" S209s $^{\prime \prime}$ CAB-2FHO DUAL FULL HT 8** 2219°

build steve ciarcia's INTELLIGENT EfRom PRogrammer

SEEN IN BYTE, OCT. 86

- STAND.AIIONE OR RS 232 SERIAL operation
MENU SELECTABLE EPROM TYPES NO CONFIGURATION JUMPERS PROGRAMS ALL 5V $27 \times X X$ EPROMS FREM COPYOR VERIFY READ. COPY OR VERIFY EPROM UPLOAD/DOWNLOAD INTEL HEX FILES PROGRAMMER DRIVER USER
ONLY\$199
KIT INCLUDES PCB AND ALL COMPONENTS EXCEPT CASE \& POWER SUPPLY

EGA GATD ATD COIITIOR NOW OXIT S569!

QUALITY IBM COMPATIBLE MOTHERBOARDS

FROM MODULAR CIRCUIT TECHNOLOGY
TURBO 4.77 / 8 MHz $\$ 129.95$ JDR PART \#: MCT-TURBO 4.77 OR 8 MHZ OPERATION WITH BOBB-2 R OPTIONAL 8087-2 CO-PROCESSOR DISKETTE OPERATION FOR MAXIMUM THROUGHPUT AND RELIABILITY CHOICE OF NORMAL TURBO MODE OR

STANDARD $4.77 \mathrm{MHz} \mathrm{\$ 109}$. JDR PART \#: MCT-XTMB
8088 CPU, OPTIONAL 8087 CO-PROCESSOR BEXPANSION SLOTS
EXPANDABLE TO 640K ON-BOARD
MEMORY (OK RAM INSTALLED)
ALLICS SOCKETED-HIGHEST QUALITY PCB ACCEPTS 2764 OR 27128 ROMS

BOTH WITH FREE MCT BIOS!

FARADAY FDD CONTROLLER

JDR PART स: FAR-FDO SUPPORTS UP TO 4 INTERNALL MOUNTED FDDS BM COMPATIBLE. INTERFACES TO
$360 K$ OR 720 K USING DOS 3 . NCLUDES CABLE FOR 2 DISK DRIVE

IBM STYLE

 COMPUTER CASEANNGED AC FITS STEEL CASE WITH COMPATIBLE MOTHERBOARDS

SWITCH CUT-OUT ON SIDE FOR PC $/ X$ STVLE POWER SUPPLY CUT HUT FOR 8 EXPANSION SLOTS
\$34.95
SLIDE TYPE CASE \$39.95

IBM COMPATIBLE

 FLOPPY DISK DRIVEIDR PART \#: FDD-360
GOOD QUALITY DRIVES
BY MAJOR MANUFACTURERS SUCH AS 51/2" HALF HEIGHT *DS/DD 360K STORAGE CAPACITY * 48 TPI

$\$ 69.95$

 MT MOTLERBOMSD S1089s Pro-sins (ase yilues fate 256K RIM s2835 130 YITT POWER SUPFLY s6ges FLIP-TOP CISE \$8985 KEY TROML" KEYBOARD s4ges 3G0k Dilive s69es FABDAY GOMTEOLLER s2,4s mONOGHROME RDIPTOR sages FOATRONIES MOMITOR seges

TOINL: \$538.15

IBM COMPATIBLE KEYBOARDS

MCT-5150
$\$ 59.95$
"5150" STYLE KEYBOARD
LED STATUS INDICATORS FOR CAPS \& NUMBER LOCK
LARGE, EASY TO REACH SHIFT \& RETUN KYPEW

MCT-5151

MCT-5060

IBM AT STVLE LAYOUT COMPATIBLES EXTRA LARGE SHIFT \& RETURN KEVS
LED INDICATORS FOR SCROLL. CAPS \& NUMBER LOCK

MCT-5339

UT
IBM ENHANCED STYLE LAVOUT
SOF TWARE AUTOSENSE FOR XI OR AT
SOFTWAREAUTO COMPATIBLES
EXTRA LARGE SHIFT \& RETURN KEYS LED INDICATORS FOR SCROLL, CAPS \& NUMBER LOCK
AUTO REPEAT FEATURE SEPARATE CURSORPAD

EASYDATA MODEMS

All models feature auto-dial/answer/redial on busy, Hayes compatible, power up self test, touchtone or pulse dialing, built-in speaker, PC Talk III Communications sottware, Bell Systems $103 \& 212$ A full or half duplex and more.

IWTERNAL

EaSYDATA-12H
$\$ 99.95$
200 BAUD HALF CARD
EASYDATA-12B \$119.95
1200 BAUD $10^{\prime \prime}$ CARD
EASYDATA-24B \$199.95
2400 BAUD FULL CARD

EXTERNAL

no software included

EASYDATA-12D \$119.95

EASYDATA-24D \$219.95
2400 BAUD

DISPLAY CARDS

FROM MODULAR CIRCUIT TECHNOLOGY MCT-EGA
$\$ 179.95$
100\% IBM COMPATIBLE, PASSES IBM EGA DIAGNOSTICS COMPATIBLE WITH IBM EGA, COLOR GRAPHICS AND MONOCHROME ADAPTORS
TRIPLE SCANNING FREQUENCYFOR DISPLAY ON EGA. STANDARD RGB OR HIGH RES OLULION MONOCHROME MONITOR PIXELS IN 16 OF 64 COLORS LIGHT PEN INTERFACE

MCT-CG

$\$ 49.95$
COMPATIBLE WITH IBM COLOR GRAPHICS STANDARD
SHORT SLOT CARD USES VLSI CHIPS TO
INSURE RELIABILITY
SUPPORTS RGB, COMPOSITE MONOCHROME 8 COLOR AND AN RF MODULATOR OUTPUT
320×200 COLOR GRAPHICS MODE 640×200 MONOGRAPHICS MODE
LIGHT PEN INTERFACE

MCT-MGP

$\$ 59.95$
COMPA TIBLE WITH IBM MONOCHROME AND HERCULES GRAPHICS STANDARDS SHORT SLOT CARD USES VLSI CHIPS TO
INSURE RELIABILITY
PARALLELPRINTER PORT, CONFIGURABLE AS
720×348 GRAPHICS MODE
LOTUS COMPATIBLE
CAN RUN WITH COL
THE SAME SYSTEM

MCT-MG

$\$ 79.95$
COMPATIBLE WITH IBM MONOCHROME AND HERCULES GRAPHICS STANDARDS SERIAL PORT OPTION
PARALLEL PRINTER PORT
720×348 GRAPHICS MODE
80×25 TEXT MODE MOD
Lotus CoMPATIBLE
SELECTABLE TO RUN ALONG WITH COLOR
MG-SERIAL OPTIONAL SERIAL PORT $\$ 1995$

MCT-MONO

$\$ 49.95$

ANOTHER FANTASTIC VALUE FROM JDR

IBM COMPATIBLE TTL INPUT * 720×348 PIXEL DISPLAY

EPROM PROGRAMMERS

FROM MODULAR CIRCUIT TECHNOLOGY
MCT-EPROM
$\$ 129.95$
PROGRAMS 27xx AND 27xxx SERIES EPROMS UP TO 27512
SUPPROTS VARIOUS MANUFACTURERS
FORMATS WITH 12.5, 21 AND 25 VOLT
PROGRAMMIMG
MENU-DRIVEN SOFTWARE ALLOWS
SPLIT OR COMBINE THE CONTENTS OF
SEVERAL EPROMS OF DIFFERENT SIZES READ, WRITE, COPY, ERASE CHECK AND VERIFY WITH EASY ONE KEY SELECTION INCLUDES SOFTWARE FOR STANDARD
hexano ntithex format
4 GANG PROGRAMMER S1899s
10 GAMG PROGRAMMER S2999s

MULIIFUHCTIOH CARDS
 FROM MODULAR CIRCUIT TECHNOLOGY MCT-MF $\$ 79.95$
 ALL THE FEATURES OF AST'S SIX PACK PLUS AT HALF THE PRICE!
 O.348K DYNAMIC RAM USING 4164 s
 NCLUDES SERIAL PORT, PARALLEL PRINTER
 CLOCK/CALENDAR
 SOFTWARE FOR A RAMDISK, PRINT SPOOLER AND CLOCK/CALENDAR

 MCT-ATMF
 $\$ 139.95$
 ADDS UP TO 3 MB OF 1 BIT RAM TO THE AT

 MEMORY (NO MEMORY INSTALLED)
 FLEXIBLE ADDRESS CONFIGURATION
 INCLUDES SERIAL PORT. PARALLEL PORT AND

 Clock CalendarEXPANSION TO 3 MB BOARD PERMITS
ATMF-8ERIAL 2nd SERIAL PORT \$2485

$$
\text { MCT-ATMF-MG } \$ 2995
$$

giggyback board (ZEROK INSTALLED)

MCT-MIO

$\$ 79.95$
A PERFECT COMPANION FOR OUR MOTHERBOARD
2 DRIVE FLOPPY DISK CONTROLLER
INCLUDES SERIAL PORT, PARALLEL PORT.
GAME PORT AND CLOCK/CALENDAR WITH BATTERY BACK-UP

DISK, PRINT SPOOLER
MIO-SERIAL 2nd SERIAL PORT $\$ 1595$

MCT-IO

$\$ 59.95$
USE WITH MCT-FH FOR A MINIMUM OF SLOTS USED
SERIAL PORT ADDRESSABLE AS COM1, COM2 COM3 OR COM4
PARALLEL PRINTER PORT ADDRESSABLE AS CLOCK CAIENDAR WITH A
BATTERY BACK-UP

IO-8ERIAL 2nd SERIAL PORT

Systems include half height hard disk drive, hard disk drive controller, cables and instructions. Drives are pre-tested and warranted for one year.

SSS Seagate 40 MB AT DRIVE

DISK COMTROLLER CARDS
FROM MODULAR CIRCUIT TECHNOLOGY MCT-FDC
\$34.95
QUALITY DESIGN OFFERS 4 FLOPPY CONTROL IN A SINGLE SLOT INTERFACES UP TO 4 FDDS TO AN IBM PC OR COMPATIBLE
INCLUDES CABLING FOR 2 INTERNAL DRIVES
USES SIANDARD DE37 CONNECTOR >8 SLOT FOR EXTERNAL DVES WHEN USED W/DOS 3.2 OR JFORMAT

MCT-HDC

$\$ 89.95$
HARD DISK CONTROL FOR WHAT OTHERS CHARGE FOR FLOPPY CONTROL IBM XT COMPATIBLE CONTROLLER SUPPORTS 16 DRIVE SIZES INCLUDING 5, 10. 20, 30840 MB
OPTIONS INCLUDE THE ABILITY TO DIVIDE 1 LARGE DRIVE INTO
SMALLER, LOGICAL DRIVES
INCLUDES CABLINGFOR 1

MCT-RLL

\$119.95
GET UP TO 50\% MORE STORAGE SPACE ON YOUR HARD DISK NCAEASES THE CAPACITY OF PLATED
MEDIA DRIVES EY 50\% MORE
RLL 2.7 ENCODING FOR MORE
RELIABLE STORAGE
RRANSFER RATE IS ALSO 50\% FASTER U50 SEC VS 500 K / sec 30 MB IN A HALF HEIGHT SLOT

MCT-FH

$\$ 139.95$
STARVED FOR SLOTS? SATISFY IT WITH THIS TIMELY DESIGN USER EXPANDABLE TO $2 M B$ OF ON-BOARD MEMORY
USES FULL 16 BIT PARITY CHECKED MEMORY 4K OR 256 K DYNAMIC RAM
CONVENTIONALING ADDRESS, ROUND OUT EXTENDED MEMORY ABOVE 640 K \& ADD

MGT-ATRAM-MG \$399
2MB PIGGYBACK BOARD (ZEROK INSTALLED)

MCT-EMS

$\$ 129.95$
2MB OF LOTUS/INTEL/MICROSOFT COMPATIBLE MEMORY' FOR THE XT CONFORMS TO LOTUS INTEL EMS
JSER EXPANDABLE TO 2 MB
USES 64K OR 256 K DVNAMIC RAM
ISE AS EXPANDED OR C
MEMORY. RAMDISK OR SPOOLER
SOFTWARE INCIUDES EMS DEVICE DRIVERS PRINT SPOOLER AND RAMDISK

MCT-ATEMS
AT VERSION OF THE MCT-EMS $\$ 13995$

 DS/DD \& DS/OO WH
ALL POPULAR HDD SIZES ARE
SUPPORTED, INCLUDING 5, 10, 20,30 \&
CAN DIVIDE \uparrow LARGE DRIVE INTO 2 SMALLER. LOGICAL DRIVES

MCT-ATFH

$\$ 169.95$
FLOPPY AND HARD DISK CONTROL IN A TRUE AT DESIGN AT COMPATIBLE, CONTROL UP TO 2 AS 2 HDDS USING THE AT STANDARD CONTROL TABLES
SUPPORTS AT STYLE FRONT PANEL LED TO INDICATE HD ACTIVITY 16 BIT BUSS PROVIDES RAPID DATA

FULLY SUPPORTEO BY AT BIOS

T200B MODEM Sg995 FHinty 2400B MODEM \$19985

BARGAIN HUNTERS CORMER MEW FROM RIM ELECTRONICS Hicke Exprass
 $\$ 695$
 PC/XT SPEED UP KIT

PAGE WIRE WRAP WIRE
PRECUT ASSORTMENT
IN ASSORTED COLORS $\$ 27.50$
100ea: $5.5^{\prime \prime}, 60^{\prime \prime}, 65^{\prime \prime}, 70^{\circ}$
500 ea : $3.0^{\circ}{ }^{\circ}, 3.5^{\prime \prime}, 4.0^{\prime}$ SPOOLS
100 feet $\$ 4.30 \quad 250$ feet $\$ 7.25$ $\begin{array}{lr}100 \text { feet } \\ 500 \text { feet } \\ \$ 13.25 & 250 \text { feet } \$ 7.25 \\ 1000 & \text { feet } \$ 21.95\end{array}$

Please specify color:
Blue, Black, Yellow or Red

* INCREASE THE SPEED OF YOUR PC BY 67\% OR MORE! * SIMPLE NO-SLOT INSTALLATION
* SOFTWARE OR HARDWARE SPEED SELECTION
* 8 MHz V20 PROCESSOR \& SOFTWARE INCLUDED
* SELECT FOR 3 TURBO FREQUENCIES
* EXTERNAL RESET SWITCH
* OPTIONAL 80888 MHz PROCESSOR AVAILABLE

Certain early PCs may not run to 8 MHz-these machines mey be swithed to one of the sticwer speeds.

SPECIAL ENDS 7/31/87

EXTENDER CARDS

IBM-PC
\$29.95
IBM-AT
$\$ 39.95$

WIRE WRAP PROTOTYPE CARDS WITH GOLD.PLATED EDGE-CARD FINGERS

IBM-PR2

IBM

BOTH CARDS HAVE SILK SCREENED: EGENDS
AND INCLUDES MOUNTING BRACKET
IBM-PR1 WITH +5V AND GROUND PLANE $\$ 27.95$
$\$ 29.95$
IBM.PR2 AS ABOVE WITH DECODING LAYOU
S-100
P100-1 BARE NO FOIL PADS
P100-2 HORIZONTALBUS
P100-2 HORIZONTAL BU
P100-3 VERTICAL BUS
P100-4 SINGLE FOIL PADS PER HOLE
$\$ 15.15$
$\$ 21.80$

APPLE
P500-1 BARE - NO FOIL PADS
P500-3 HORIZONTAL BUS
P500-4 SINGLE FOIL PADS PER HOL
7060.45 FOR APPLE lle AUX SLOT

FRAME STYLE TRANSFORMERS		
12.6V AC CT	${ }_{4}^{2} \mathrm{AMPMP}$	${ }_{7}^{7.95}$
12.6 V AC CT	8 AMP	10.95
25.2 V AC CT	2 AMP	7.95
25 PIN D-SUB		
GENDER		
CHANGERS		
\$7.95		

CAPACITORS				
	TAN	LUM		
	$\begin{array}{r}15 \mathrm{~V} \\ 15 \mathrm{~V} \\ \hline 185\end{array}$	${ }_{\text {l }}^{\text {1.0 }}$	$3_{35 \mathrm{~V}}^{35 \mathrm{~V}}$	
10		${ }_{4}^{2.2}$	-	. 65
${ }_{2}^{22}$	${ }_{35 \mathrm{~V}}^{1.30}$	${ }_{10}$	${ }_{35 \mathrm{~V}}^{35 \mathrm{~V}} 1.0$	
DIS				
${ }_{22}^{1009}$	50v		5	${ }^{05}$
27	50V	. 00022		. 05
33 47	50V	. 010	5	. 07
${ }_{100}^{68}$	50V	. 02		. 07
220		1	120	. 12
560	50.05			
MONOLITHIC				
.014f	$\begin{aligned} & 50 \mathrm{l} \\ & 50 \mathrm{l} \\ & \hline 14 \end{aligned}$	$47,$	50V	. 28
ELECTROLYTIC				
	RADIAL 25			
2.2		10	50 V	. 16
4.7 10	50V	${ }_{47}^{22}$	160	148
47	${ }^{35 \mathrm{~V}}$. 18	100	35 V	25
${ }_{220}^{100}$	16 V 35 V 180 18	220 470	250V	30 50
470	25 V 30	1000		
2200	16V ${ }^{160}$	2200		
4700	25V 1.45	4700	16 V 1.	1.25

	RESISTOR NETNORKS		
SIP	10 PIN	9 RESISTOR	.69
SIP	8 PIN	7 RESISTOR	.59
DIP	16 PIN	8 RESISTOR	1.09
DIP	16 PIN	15 RESISTOR	1.09
DIP	14 PIN	7 RESISTOR	.99
DIP	14 PIN	13 RESISTOR	.99

1/4 WATT RESISTORS

5% CARBON FILM ALL STANDARD VALUES FROM 1 OHM TO 10 MEG. OHM 10 PCS sime value . 05 100 PCS sane value .02

$$
x-2 x+2
$$

SWITCHING POWER SUPPLIES

PS-IBM $\$ 69.95$

* Foh IgM PC-xt compatible - 135 WATTS
- +5V@15A. +12V@4.2A -5V@.5A. 12V@.5A
- ONE YEAR WARRANTY PS-IBM-150 $\$ 79.95$
- FOR ibm PC-xt COMPATIBLE - 150 WATTS
+12V@5.2A.+5V@16A -12V@.5A. -5V@.5A
ONE YEAR WARRANTY

PS-130 $\$ 99.95$

130 WATTS

- FOR USE IN OTHER IBM TYPE MACHINES
90 DAY WARRANTY

PS-A

$\$ 49.95$

- USE TO POWER APPLE TYPE

SVSTEMS. 79.5 WATTS
$+5 \mathrm{~V} @ 7 \mathrm{~A},+12 \mathrm{~V}$ @ 3A
.5 V @ $5 \mathrm{Ca},-12 \mathrm{~V}$ @ 5 C - APPLE POWER CONNECTOR

PS-1558
$\$ 34.95$
$: 75$ WATTS, UL APPROVED
$-12 V @ 250 \mathrm{ma}$ - 5 V @

MUFFIN FANS

WISH SOLDERLESS BREADBOARDS

| $\begin{array}{c}\text { PART } \\ \text { NUMBER }\end{array}$ | DIMENSIONS | $\begin{array}{c}\text { DISTRIBUTION } \\ \text { STRIP(S) }\end{array}$ | TIE | TERMINTS |
| :---: | :---: | :---: | :---: | :---: | \(\begin{gathered}TERMIPAL

STRIP(S)\end{gathered}\) | WBU-D | $.38 \times 6.50^{\prime \prime}$ |
:---	:---		WBU-D	$.38 \times 6.50^{\circ}$	1	100	\ldots	\ldots	\cdots	2.95						
WBU-T	$1.38 \times 6.50^{\circ}$	\ldots	\ldots	1	630	\ldots	695		WBU-204-3	$3.94 \times 8.45^{\prime \prime}$	1	100	1	630	\ldots	6.95
:---	:---	:---	:---	:---	:---	:---	---:									
WUU	1.3	1260	2	17.95					WBU-204	$5.13 \times 8.45^{\prime \prime}$	1	4	400	2	1260	
:---	:---	:---	:---	:---	:---	:---										
WBU	$6.38 \times 9.06^{\prime \prime}$	5	2	1260	3	24.95		WBU-206	$6.88 \times 9.06^{\prime \prime}$	5	500	3	1890	4	29.95	
:---	:---	:---	:---	:---	:---	:---	:---									
WBU-208	$8.25 \times 9.45^{\prime \prime}$	7	700	4	2520	4	39.95									

LITHIUM BATTERY
AS USED IN CLOCK CIRCUITS

2 VOLUME SET IC MASTER
THE INDUSTRY STANDARD $\$ 129.95$

FI Visit our retail store located at 1256 S. Bascom Ave. in San Jose, (408) 947-8881
F.FJDR Microdevices

110 Knowles Drive, Los Gatos, CA 95030
Toll Free 800-538-5000 • (408) 866-6200
FAX (408) 378-8927 • Telex 171-110

PLEASE USE YOUR CUSTOMER NUMBER' WHEN ORDEAING TERMS: Mnimum order $\$ 10.00$. For shipping and handing include $\$ 2.50$ tor UPS Ground and $\$ 3.50$ for UPS Air. Orders over 1 ib, and forergn orders may require add itional shipping charges-please contact our sales deparment tor he amount CA
residents must include appicable sales bx. All merchandise is warranted lor 50 days residents must include applicable sales tax. All merchandise is warranted tor 90 days
unless otherwse stated. Pnces are subj;cii to change without nolice. We are no responsible for typographical errors. We reserve the nght to imit quanities and to substitute manulacturet. All merchandise subject to pror sale.

Wail-Order Electronics 415-592-8097

NEC V2O \& V30 CHIPS
Replace the 8086 or 8088 in Your IBM-PC
Increase Its Speed by up to 40% !

Part No.					
UPD70108-5 (5MHz) V20 Chip. \$					
UPD70108-8 (8 MHz) V20 Chip. UPD70116-8 (8MHz) V30 Chip. UPD70116-10 (10MHz) V30 Chip.					
7400					
Part No.	1-9	$10+$	Part No.	1-9	
7400.	29	19	7485.	65	
7402	. 29	19	7486	45	
7404	35	25	7489.	2.05	1.95
7405.	.39	29	7490	49	39
7406.	. 39	29	7493	45	
7407.	39	29	74121.	45	
7408	. 35	25	74123	59	
7410.	35	25	74125	55	
7414	49	.39	74126	75	
7416.	. 45	35	74143	4.05	3.9
7417.	45	.35	74150	1.35	12
7420	35	25	74154	1.35	1.2
7430	. 35	25	74158	1.59	4
7432.	39	29	74173	85	
7438.	. 39	29	74174.	. 65	
7442	. 55	45	74175	65	
7445	. 79	69	74176	. 99	. 8
7446	. 89	79	74181.	195	1.8
7447.	89	79	74189.	2.05	
7448.	2.05	1.95	74193.	79	6
7472	75	65	74198	185	.
7473.	. 45	. 35	74221.	. 99	8
7474.	. 45	. 35	74273.	2.05	1.9
7475.	. 49	. 39	74365.		
7476.	45	. 35	74367.		

7415					
74LSOO.	29	. 19	74LS165.	75	. 65
74LSO2	29	19	74LS166.	99	89
$74 \mathrm{LSO4}$.	. 35	. 25	74LS 173.	. 59	. 49
74LS05.	35	25	74LS 174	49	. 39
74LS06	1.09	. 99	74LS175.	49	39
74LS07.	109	. 99	74LST89	4.59	4.49
74LS08.	29	. 19	74LS191.	. 59	. 49
74LS 10	29	19	74LS193.	79	. 69
74LS14.	49	. 39	74LS221.	69	59
74LS27.	. 35	. 25	74LS240.	. 79	. 69
74LS30	29	19	74LS243.	79	. 69
74LS32	35	25	74LS244.	79	. 69
74LS42.	49	. 39	74LS245	89	. 79
74LS47	. 99	89	74LS259.	99	. 89
74LS 73	39	. 29	74LS273.	. 89	79
74LS74	35	. 25	74LS279.	. 49	39
74LS75.	39	. 29	74LS322.	4.05	3.95
74LS76.	55	. 45	74LS365.	. 49	39
74LS85.	59	. 49	74LS366.	49	. 39
74LS86.	35	25	74LS367.	49	. 39
74LS90	49	. 39	74LS368.	49	. 39
74LS93	49	39	74LS373.	79	69
74LS123.	. 59	49	74LS374.	79	. 69
7415125	49	. 39	74LS393.	89	79
74LS 138.	. 49	. 39	74LS590.	6.05	5.95
74LS139	49	39	74LS624.	205	1.95
74LS154.	1.09	. 99	74 LS629.	2.29	2.19
74 LS 157.	45	. 35	$74 L 5640$.	1.09	99
74LS158.	45	. 35	74LS645.	1.09	. 99
74LS163.	59	. 49	74LS670.	109	99
74LS164	59	49	74LS688.	2.05	1.95

74S/PROMS*

74500	29	745188°	29
74504	35	745189	1.69
74508	35	74S196,	2.49
74510	29	745240.	1.49
74532	35	74S244.	149
74574	45	745253	79
74585	¢. 79	74S287	1.49
74586		$74 \mathrm{S288}$.	1.49
745124	2.95	745373	149
74S174.	79	745374	1.49
745175	79	745472*	2.95
	7	4F	
74 FO	39	74F139.	
74F04.	39	74F157.	95
74 FO 8.	39	74 F 193	3.95
74510	39	74F240	139
74532.	39	74F244.	1.39
$74 F 74$	49	74F253.	99
$74 \mathrm{F86}$.	59	74F373	1.39
74 F 138	. 89	$74 F 374$.	1.39
		CMOS	
CD4001	19	CD4076.	65
CD4008	89	CD4081.	25
CD4011	19	CD4082	5
C04013	29	CD4093.	35
CD4016	29	CD4094	89
CD4017.	. 55	CD40103.	2.49
CD4018	59	CD40107.	
CD4020	59	CD40109	49
CD4024		CD4510	
CD4027.	35	CD4511.	69
CD4030	29	CD4520.	75
CD4040	65	CD4522.	79
CD4049		CD4538.	79
CD4050	29	CD4541	69
CD, 4051	59	C04543.	79
CD4052	59	CD4553.	95
CD4053	59	CD4555.	
CD4059	3.95	CD4566.	49
CD4063	1.95	CD4572 (MC14572)	39
C04056.		CD4583	89
CD4069	25	CD4584	39
CD4070	25	CD4585.	89
CD4071.	25	MC14411P.	8.95
CD4072	25	MC14490	449

COMMODORE CHIPS

Part No. Price	Part No Price	Part No. Price
WD1770 Disk Cont. . . 19.95	6551 ACIA. . . . 3.29	8722 MMU. 9.95
SI-3052P 5V Posituve	6560 VIC-I. . . 10.95	251104-04 Kernal ROM. $\quad 10.95$
Vollage Reg. 2A.... 5.95	6567 V\|C-II. . . . 14.95	318018 -03 Basic ROM-C128 . . 15.95
6502 MPU wilnt Clock ... 2.25	6569 VIC PAL . . . 14.95	318019.03 Basic ROM-C128 . . 15.95
6504A CPU. 1.95	6572 VIC PAI N ... 14.95	
6507 CPU. 4.95	$6581 \mathrm{SID}(12 \mathrm{~V}) \ldots 14.95$	325302-01 64K ROM for 540/1541 Drve 15.95
6510 CPU. 9.95	6582 SID (9V) ... 14.95	-325572-01 Logic Array 24.95
6520 P/A 1.75	8360 Tex. Editing. 10.95	-82S100PLA (906114.01) ${ }^{\text {a }}$. . . 13.95
6522 VIA. 2.95	$\begin{aligned} & 8501 \mathrm{MPU} \\ & 8502 \mathrm{MPU}\end{aligned} \begin{array}{rrr}10.95 \\ 7.95\end{array}$	901225-01 Char ROM..... 11.95
6525 ¢P1. 7.95	8563 CRT Contr, . 15.95	$901226-01$ BASLC ROM. ... 11.95 $901227-03$
6526 CIA 14.95	8564 VIC. 15.95	901229-05 Upgrade ROM
6529 SP1. 4.95	8566 VIC PAL . . . 29.95	(For 154t Disk Drve) 15.95
	8701 Clock Chip . . 9.95	
6545-1 CRTC 2.49	*8721 PLA, . . . 14.95	**Note: 82S100PLA = U17 (C-64)

MICROPROCESSOR COMPONENTS

DESCATELLITETV

supply the basic sync functions for either color of mono- chrome 525 line $/ 60 \mathrm{~Hz}$ intertaced and camera video recorder

MM5321N
$\$ 11.95$
NTERSIL Also Available! 74HCHI-SPEEDCMOS

Parto.	Price	Partio.	Price
74 HCOO	25	$74 \mathrm{MC175}$.	69
74HCO2	25	74HC221.	99
$74 \mathrm{HCO4}$	29	$74 \mathrm{HC240}$	79
$74 \mathrm{HCO8}$	29	74HC244	79
$74 \mathrm{HC10}$.	29	$74 \mathrm{HC2} 25$.	89
7+HC14.		74 HC 253.	59
$74 \mathrm{HC30}$	29	$74 \mathrm{HC259}$	65
$74 \mathrm{HC32}$.	29	74 HC 273	79
74HC74.	39	$74 \mathrm{HC373}$.	79
$74 \mathrm{HC75}$.	39	$74 \mathrm{HC374}$.	9
74HC76.	45	$74 \mathrm{HC393}$.	75
74HC85.	79	74HC595.	19
74HC86.	39	$744 \mathrm{C6B8}$	79
74 HC 123		74 HC 4040	89
74HC125.	49	$74 \mathrm{HC4O49}$	59
74HC132	49	74 HC 4050	59
74HC138.	49	74HC4060	1.09
74HC139	49	74 HC 4511	1.29
74HC154.	1.19	74HC4514	1.19
$74 \mathrm{HC163}$	65	74 HC 4538	. 89

74HCT - CMOS TTL

74 HCTOO	29	74HCT139.
74HCTO2 $74 \mathrm{HCTO4}$. 29	74HCT157.
${ }^{74} \mathrm{HCTOB}$	29	74HCT175.
74 HCT 10.	29	74HCT240.
74 HCT 32.	. 29	74HCT244.
${ }^{74 \mathrm{HCT} 744}$	49	74 74 HCT 245.
${ }^{7} 74 \mathrm{HCT86} 8$. 49	${ }_{74} 74 \mathrm{HCT} 3738$.

$746-6 M O S$		
74000	29	74 C 174
$74 \mathrm{CO4}$.	29	74 C 175
7.1008	35	74 C 240
74 C 10	35	74 C 244.
$74 \mathrm{C14}$	49	746373.
74 C 32.	35	$74 \mathrm{C374}$
74474.	59	$74 \mathrm{C912}$
	1.39	$74 \mathrm{C915}$
$74 C 86$ $74 C 89$	35 519	74C920.
$74 \mathrm{C90}$.	. 99	74 C 922.
$74 C 154$.	2.95	$74 \mathrm{C923}$

LINEAR

DSOO26CN	1.95	LM1458N	9
T1074CN	89	LM1488N	9
TLO84CN	99	DS $14 C 88 \mathrm{~N}$ (CMOS)	19
AFIOO-ICN	8.95	LM1489N.	49
LM307N	45	DS $14 C 89 \mathrm{~N}$ (CMOS)	
LM309K	1.25	LM1496n	85
LM31 N	45	MC1648P	4.95
LM317T	79	LM1871N	2.95
LM318N	99	LM1872N	295
LM319N	. 99	LM1896N-1	1.59
LM323K	3.95	ULN2003A	. 99
LM324N		XR22066.	395
LM338k	4.95	XR2211.	-295
LM339N	+ 39	XR2243	1.95
LF347N.	1.79	DS26LS29CN	4.49
LM348N	69	OS26LS31CN	9
LM350T	2.95	DS26LS32CN	1.19 195 19
LE351N	39 49	DS26LS330N	$\begin{array}{r}1.95 \\ \hline\end{array}$
LF355N	79	LM2907N	2.49
LF356N.	79	LM2917N (8 pin)	1.55
LF357N	1.09	$\mathrm{MC3419CL}$	9.95
LM358N		MC3446N.	295
LM360N	${ }_{2} 119$	MC3450P	2.95
LM 361 N .	1.79	MC3470P.	. 1.95
LM $3880 \mathrm{~N}-8$.	99	MC3471P	4.95
LM386N-	99	MC3479P	${ }^{4} .79$
LM387N	. 39	MC3486¢	1.69 1.69
LM399H	2.95	LM3900N	49
LF411CN.	. 79	LM3905N	119
tL497ACN	2.69	LM3909N	99
NES4OH (C540H).	2.95	LM3914N	1.95
NE555V		LM3916N	-95
XR-L555.	75	NE55	. 69
LM556n		7805K (LM $340 \mathrm{~K}-5$)	
NE558N LM565	89	${ }^{7} 7812 \mathrm{~K}(\mathrm{M} 340 \mathrm{~K}$-12)	129
LM5667v	. 69		1.29
NE592N.	89	${ }_{7812 T}^{7805 T}(L M 3440 T-12)$,	. 49
LM741CN	29	7815 T (M340T-15)	49
LM747CN	$\begin{array}{r}.59 \\ 149 \\ \hline 1\end{array}$	7705K (M3320K 5)	+ 45
MC1372P	249		. 99
MC1377P.	319	75477	29
MC1398P.	8.95	76477	5.95
LM1414N.	1.29	MC145406P.	2.95
IC SOCMETS			
Low Profile		Wire Wrap (Gold) Level	
	112	8 8 pin WW	
16 pm LP	13	16 pin WW.	. 69
24 pin LP	25	24 din WW.	1.19
28 pin LP	27	28 pin WW	9
40 pmL LP.	29	40 pin WW.	1.89
Soldertail Standard (Gold \& Tin) \& Header Pug Sockets Also Available			

Worldwide - Since 1974 - CUALIT GOMPONENIS • COHPGIIIVERRIGING

 - piowet Dalivir

 - piowet Dalivir}

COMMODORE COMPATIBLE ACCESSORIES

HESWARE 300 Baud Modem FOR VIC-20 AND C-64

- Connects directly to User Port. Manual Answert Dial. Function keys defined for convenience - Includes Midwest Micro Associates communi-
cation software. CM-1 Ifor vic.-2

External Power Supplies CPS-10 (For C.64). $\$ 39.95$ CPS-128 (For C-128). $\$ 59.95$

RS232 Interface

Allows connection of standard serial devices. JE232CM (For vic-20, C-64 8 C -128.). . $\$ 39.95$ TRS-80/TANDY COMPATIBLE ACCESSORIES

E-X-P-A-N-D TRS-80 MEMORY

TRS-80 MODEL 4. 4P, \& 4D 64K/128K EXPANSION TRS-64K-2.

$\$ 14.95$
K to 128 K
TRS-80 MODEL 100 8K EXPANSION
M1008K.
$\$ 19.95$ ea. or 3 for $\$ 54.95$
ZUCKIEIPISAIPI
TANDY 1000
Expansion Memory Half Card

Expand the memory of your
Tandy 1000 (28k Vession to

as much as 640 K Also includes
 DMA Cont
256K RAM.
$\$ 99.95$
$\$ 119.95$
TAN-EM512K
 Rucudes 512 K RAM. NEW! 20Meg Hard Disk NEW! T20MB

20 MB Hard Disk
Board
$\$ 579.95$
SX20MB
20MB Hard Disk Drive Board
for tandy 1000sX. . . $\$ 589.95$

TANDY 1000 Multifunction Board with Clock Calendar Expand the memory on your Tandy 1000 (128 K Version) 10 as
much as 640 K Complete with an RS232 port, clock/calendar, RAM Disk Printer Spooler and on-board DMA controller chip
MTAN-256K Includes 256 K RAM. $\$ 179.95$ MTAN-512K Includes 512K RAM. \$199.95 NEW! Multifunction NEW! Board for TANDY 1000SX
M256K Includes 256K RAM. . . . \$189.95

Erases all EPROMs. Erases up to 8 chips within 21 minutes (1 chip in 15 minutes). Maintains constant exposure distance
of 1 " Special conductive foam liner eliminates static build-up.

DE-4 UV-EPROM Eraser. . . . \$69.95 UVS-11EL Replacement Bulb. . . . \$19.95 NCF-2 Cond. Foam $12 \times 24 \times 1 / 4$ Hard Biik. $\$ 8.95$

NOW YOU CAN BUILD AN IBM PC/XT COMPATIBLE!

IBM Compatible Kit No. 2 $\begin{array}{llll}\text { IBM-64K (2) } & \text { 64K RAM Chips (18). . } & \$ 19.90 \\ \text { KB5160 } & \text { AT Style Keyboard . . } & \$ 59.95\end{array}$ \begin{tabular}{ll}
IBM-FCC \& Floppy Controller Card $\$ \$ 34.95$

\hline

 BM-Case Flip-Top Case, \$ 39.95 BM-MCC Monochrome Card . . \$ 59.95 BM-PS Power Supply. S 69.95 FD55B TEAC 5 $1 / 4$ " Disk Drive . . $\$ 109.95$

IBM-MON \& $12^{\prime \prime}$ Monochr Monitor $\$ 99.95$

\hline
\end{tabular} IBM-MB Motherboard. $\$ 109.95$

FREE: QUICKSOFT PC

 WRITE WORD PROCESSING SOFTWARE INCLUDED!Weight: 48 lbs. Regular List $\$ 604.50$ IBMSP2 (Includes 9 items above)
$\$ 529.95$

ADDITIONAL ADD-ONS AVAILABLE!

RS232HC	RS232 Serial Half Card. \$ 29.95
EM-100	Expansion Memory Half Card (without RAM) . \$ 59.95
IBM-ICB	Integrated Color Board w/Printer Port. \$ 99.95
IMFC	Multifunction 0-384K RAM (without RAM). . . . \$109.95
PM1200B-2	1200/300 Baud Half Card Modem without software. . . \$129.95
PM1200B-2S	1200/300 Baud Half Card Modem with Mirror Software . . \$159.95
IBM-EGA	Enhanced Graphics 256K Video RAM \$229.95
TTX-1410	14" RGB Cotor Monitor. \$289.95
IBM-20MBK	20MB Hard Disk Drive, Controller \& Cable. . . . \$429.95

NEW PRODUCTSI

NEW! Logitech Mice
IBM PC/XT Compatible
C7BASE
C7PLUS C7 Mouse with 3.1 Sottware. $\$ 84.95$ C7BUS C7 Mouse w/Bus Bra. \& PLUS Pkg. Sfwr. \$119.95
IBM PC/XT/AT
Compatible Keyboard
$N E W$: AT

- Tactile touch keyswitches • AT style layout - Switch selectable between PC/XT or AT - Illuminated Caps Lock, Num Lock and Scroll Lock indicators. Low
KB5160.
$\$ 59.95$
IBM PC/XT
Compatible Enhanced
Keyboard

- Enhanced PC/XT keyboard (equiv. to Keytronics ${ }^{\text {™ }} 5151$) - Separate cursor and numeric keyboard. Typewriter style layout makes it easier to learn!. LED indicators - Manual included - Color: off-white \cdot Size: $20^{\prime \prime} \mathrm{L} \times 8^{1 / 2} \mathrm{~W} \times 1 / 2 \mathrm{H}$
IBM-ENH.
\$79.95
Turbo 4.77/8MHz Motherboard
 IBM PC/XT Compatible 75% taster than the IBM PC while in the turbo mode. Turbo Mode selectable through either software or hardware Expandable to 640 K (comes w/zero-K) DTK/ERSO BIOS included
TURBO.
NEW!
\$129.95

APPLE COMPATIBLE ACCESSORIES

ameco Parallel Printer Card ameco fugcrioncs for Apple II, II+ and Ile
 printers Centronics standard Advanced text printing
\qquad JE883 6ak Butter for JE880 \$69.95 \$59.95 JE8803 JE880 and JE883 \$109.90 \$99.95

ameco Extended 80-Column

 S ELEGrionics Card for Apple lle

JE864 \$59.95

Additional Apple Compatible Products Available

JE450 Solderless
and efticient system for and efficient system for
breadboarding electronic wire leads canponents $\&$ inserted and removed soldering -3 res or datepower supplies $5 \mathrm{~V} @ 1 \mathrm{~A}$
+5 V to +15 V . 5 A . 5 V $20 \mathrm{VAC}, 60 \mathrm{~Hz}$ fused NEW!

 JU-455 Panasonic 5% DS $1 / 2-$ H (IBM PC $/ X T)$ \$ 109.95 JU-475 Panasonic $55^{1} 40$ DS $1_{2}-\mathrm{H}$ (IBM AT) . . $\$ 119.95$

DATA BOOKS		
30003	National Linear Data Book (82)	\$14.9
30009	Intersil Data Book (86).	9.95
30013	Zilog Data Book (85).	\$14.95
30032	National Linear Supplement (84)	6.95
210830	Intel Memery Hanabook (87).	\$17.95
30843	Intel Microsystem Hnabk. Set (87)	
MUFFIN/SPRITE-STYLE FAN		

MUF60.
$\$ 9.95$
SU2A1.
$\$ 8.95$
$\$ 20$ Minimum Order - U.S. Funds Only Shipping: Add 5\% plus \$1.50 Insurance

California Residents: Add 6\%, 61/2\% or 7\% Sales Tax
We reserve the right to substitute IC manufacturers.

Data Sheets - 50c each Prices Subject to Change

Send $\$ 1.00$ Postage for a FREE Seasonal Flyer FAX 415-592-2503

7/87

Send \$1.00 Postage for a FREE 1987 CATALOG

Telex: 176043

Your Only Move Is To MCM Electronics

(

Make Your Move By Dialing TOLL-FREE 1-800-543-4330
In Ohio, 1-800-762-4315 - In Alaska and Hawaii, 1-800-858-1849
MCM ELECTRONICS
858 E. CONGRESS PARK DR.
CENTERVILLE, OH 45459
A PREMIER Company

Summer Fun starts at Dick Smith Electronics!

Get the latest books for summer reading \& reforence!

Know Your Oscilloscope (B-2003)
$\$ 11.95$
The fourth adition of this classic text provides oscilloscope users data covering a broad range of uses From the basics of CATs to the hatest hilech scopes, this book is perfect for hands-on learning.

World Radio-TV Handbook (B-2087) \$19.95 The new 1987 edition of this practical guide to the world's radio E long. medium, $\&$ shor-wave broadcasters by frequency, time ε language. and much morel

1987 Radio Amateurs Callbook (B-2187) $\mathbf{\$ 2 5 . 0 0}$ North American listing. 65th anniversary edition includes 478, 267 licensed Radio Amateurs and many features

Yagi Antenna Design (8-2307
$\$ 15.00$
Based on a series of articles that originally appeared in Hom Radio. this important reference covers all aspects of the design of high pe
formance Yagi antenna systems. Radio amateurs will find the theo retical $\&$ practical data in this hardcover text extremely valuable.

Shortwave Radio Listening with the Experts (B-2315)
SWL ers \& OX ers ${ }^{1}$ This is the one book you need for your radio shack Learn to identify various foreign languages and foreign $\&$ hocal
broadcasts. locate elusive stations. and get many other handy tips brom 25 seasoned listeners.

Troubleshooting a Repairing of Micro-
processor-based Equipment $(\mathbb{B}-2376)$ \$21.95
This comprehensive guide provides the service technician, field service engineer. or student with a ooüc approach to troubleshoots procedures for diagnosing isolating \& locating circuit faults

The Cellular Connection (8-3951)
$\$ 9.95$
As a shopper s guide or owner s reference, this is an up-to-date. fact-
filled, easyreading guide to the booming world of mobile telephones includes many pages of informative illustrations \& photographs roamer access numbers, glossary, \& a look at the futu
Video Production Guide (B-3984)
$\$ 28.95$
Become a video mogul! This thorough text provides a broad \& director. It covers studio \& location work from pre through pos production with emphasis on both technology \& human organization.
IC Substitution Manual (B-4001)
$\$ 29.95$
design office that uses IC's. Find equivalents or substitutes for an incredible range of IC's identified by either manufacturer or number.

IC Master 1987 Edition (B-4002)
$\$ 130.00$
The original and only complete guide to currently available IC's related components of concern to the design engineer or active hobbyist is bigger \& berter this year! Includes expanded sections on CAE/CAD technology, custom/semicustom products, military parts.

Illustrated Dictionary of Microcomputers (B-4006)
$\$ 14.95$
The 2 nd edition of the most current $\&$ complete reference available on to
to include nearly 4000 new entries - over 8000 key terms in all nchades over 350 illustrations.
Electronics Math (8 -4007)
$\$ 15.95$
Justhe right combination of practical problems and the ory makes the mathematics of circuitry amazingly easy to understand g use. This is ar

Logic Data Sel ($\mathrm{B}-4062$)
\$24.95
A complete \& comprehensvie set containing detais on MM 54 HC
$74 \mathrm{HC} / 54 \mathrm{HCT} / 74 \mathrm{HCT}$ high speed micro MOSS family, CD4000 family, MM54C. 74 C family, CMOS, LSI and VLSI famlies. Previous'ly sold as separate volumess B-4060 and B-406 1 are now avaiable as a
set at savings of over 15% ? Here's the meter you've
been waiting for!
Handheld 4-digıt LCD capacitance meter measures from 0.1 pF to 999.9 mF . Features extended resolution: calculates true capaci-
tance; shows leakage: calculates time constants; reads dielectric absorption; auto or manual zeroing; sorts capacitors; identifies transistor types \& leads; calculates cable

Daetron 4-digit Auto-range Capacitance Meter

Practical projects are fun to build \& use!

EVELS. *Beginner **Intermediate *** Advanced

MPEREXK EC s139

Closed-caption decoding is for everyona! Many TV programs carry specially encoded signals that provide capions to allow hearingsimpaired peogle to toillow dialogue $\&$ naration. The National Education Association and PTA have also
endorsed cosed-captioning as an educational tooll Since many endorsed cosed-captioning as an educational tooll since many
pooular children's programs are captioned, kids can now develop reading skills \& confidence in their leisure hours. With DSE's Supertext TC. low-cost decoding is available for everyone! This easy to-build kit uses licensed decoding technology and requires only basic bench tools ε good soldering technique to assemble. Requires
direct audio/video TV inputs or use RF modulator $\mathrm{K}-6040$ ($\$ 9.95$). direct audio/video TV inputs or use RF modulator
Use power supply M-9526 (\$6.95) or similar.

Radio Direction
Finder Kit

Going away for summer vacation? Don't leave your home unprotected!

KEEPSAFER PLUS

Install your own systom

 for safoty a savings
 installed security system at a fraction of the cost. Wireless technology means easy installation, and false alarms (from RF)) are prevented by the control unit at least four times in less than one second to b acknowledged). This nationally advertised system consists of Master Control Console (with powerfut built-in alarms). 3 sets of Transmitter with sensors. \& Remote Control unit to operate the system from anywhere within range of the master console. You can easily expand or customize your system with a

Add on for complete flexibility

Iransmitter with sensor (L-5508)
Bedside Alarm (L.5509)
Remote Control (L-5512)
Emergency Dialer (L.5510)
Alerts National Central Monitor Station when alarm soun Area Detector (L-5511).............
Infrared people detector
Alarm Siren (C-2705).
$\$ 24.95$
$\$ 25.99$ $\$ 24.95$
$\$ 54.95$ $\$ 64.75$
$\$ 99.75$

Here's a versatile instrument for work or pleyt Locate the source of any transmission! DSE' R RDF has a $50-500 \mathrm{MHz}$ ange with internal alignment reference and 170° catibration. Features adjustable internal monitor speaker, stable digital circuitry, \& self9530 power supply ($\$ 13.95$) required for base station use. Antennas not included (try $4 \times 0-4205, \$ 15.50$ each). Compare with $\$ 5008$

Get on the air this summer with a fantastic DSE transceiver kit

UHF Transceiver Kit $(\mathrm{K}-6300) \quad \star \star \star \mathbf{\$ 1 6 9 . 0 0}$ 440.450 MHz : 10 kHz channel spacing (offset 5 kHz); FM: 10 W
output; 5 kHz max deviation (limited to 10 kHz with 20 dB overdrive @ $1 \mathrm{KHz}, 100 \%$ deviation at 3 kHz): receiver sensitivity 0.5 uV pd for 10 dB sinad; selectivity $6 \mathrm{~dB} @ 7.5 \mathrm{kHz}, 60 \mathrm{~dB} @ 25 \mathrm{kHz}, 55 \mathrm{~dB} @$ see review In 73 for Radlo Amatoura, Oct. 1986

VHF Transceiver Kit (K-6308) $\star \star \star \quad \$ 159.00$ 144-148 MHz; 10 kHz channel spacing (offset 5 kHz); FM; 10 W nominal output $(15 \mathrm{~W}$ max); receiver sensitivity 0.5 WV for 12 dB
quieting; selectivity $60 \mathrm{~dB} @ 25 \mathrm{kHz}$; full repeater capability $(\pm 600 \mathrm{kHz}$). see reviow In 73 for Radlo Amatours, May 1986. NOTE: We cant keeo uo with the demand lor this po

HF Transceiver Kit (K-6330) $\star \star \star \quad \$ 199.00$ Any 500 kHz range within $2 \cdot 30 \mathrm{MHz}$: LSB, USB, CW; power output
30 W PEP (SSB), 15 W (CW): occupied bandwidth $8 \mathrm{kHz}(\pm 25 \mathrm{~dB}$): harmonic suppression $>60 \mathrm{~dB}$: receiver sensitivitr $>0.5 \mathrm{uV} 110 \mathrm{~dB}$ $\mathrm{S}+\mathrm{N} / \mathrm{N}$): selectivity $6 \mathrm{~dB} @ 4 \mathrm{kHz} 60 \mathrm{~dB} @ 7 \mathrm{kHz}$; image rejection 80 meter version supplied - call for info on band upgrade packsI

Introduce a youngster or novice to the exciting world of electronics!

FunWay Into Electronics
Gift Set (K -2605)
${ }^{5} 18^{\text {os }}$
Try Dick Smith's legendary electronics course in a box! This set includes funWay into Electronics. Volume 1, which introduces electronics
terms \& concepts in 20 entertaining propects. All parts necessary to build any of the projects are included as well as a re-usable plastic
parts tray. All you'll need is a 9 V battery (try DSE\# $\mathrm{S}-3286 . \$ 1.49!$).

R-E Reader's Special

For a limited time only you can
get our Australis I Satellite
Receiver kit together with the
Stereo Upgrade kit saving
5118.95 value!

CLOSEOUT! ofter good while supplies last:

DSE has the tools you need for pro-quality projects!

This quarter-ton manual press is a rugged, practical installation tool for low volume mass termination of various IDC connectors on tha ribnge of cable. Interchan

Cutters
Flat cabie (T-5261) \$54.95 - Strip header (T-5262) \$49.05
Base Plates $\$ 29.95$ each

- Female socket transition connectors (T-5263) - Card edge connectors (T-52

Mini Drill Set (T-4751) \$9.95
For the hobbyist, toolmaker or technician. Set contains 4 high-speed twist drills with 3 DC power cable in a plastic case.
Mini Drill Stand (T-4753) $\mathbf{\$ 1 2 . 9 5}$ Fits T-4751 drill (abou

TORX Screwdrivers

\#08	(T-4208)	\$2.70	each	10 \& up	\$2.60 each
\# 10	(T-4210)	\$3.15	each	108 up	\$3.05 each
\#15	(T-4212)	\$3.40	each	10% up	\$3.30 each
\#20	(T-4214)	\$3.60	each	10 \& up	\$3.50 each

Don't let the kids get bored this summer-give them this affordable Apple-compatible computer!
The Laser $12 \mathrm{~B}^{\text {" }}$ gives you the
best of both Apples at half the price! It runs virtually any Ite or Ilc program educational, business or game. Built-in features include
128 K RAM, 32 K ROM W Microsott" BASIC, 40/B0 column text. serial modem port, joystick mouse interfaces. And it's expandable! It supports RGB monitors LASER $128^{\text {mu }}$ $\&$ LCD displays, offers expansion
slots $\&$ much more

Applecompatible monitor for Laser 128 ($\mathrm{X}-1130$) $\$ 79$ Call for current prices a availability of our XT- and AT- compatible computer kits!

14-Day Satiotaction Guarantoo Order Toll Free
MAIL ORDERS
DSE, P.O. BOX 8024, Redwood City, CA 94063

Man - Fri 7am - 6 pm Pacific Time Califarnia Orders call 415-368-1066 For infarmation call 415-368-8849

DICK SMMIH ELECTRONICS To recetve your copy of our colorful 448 page catalog, circle Reader Service 95

Radio Shack Parts Place' PARTS FOR YOUR PROJECTS AT EVERYDAY LOW PRICES!

Try Our Fast Special-Order Service

- No Minimum Order!

 - No Postage Charge!Your Radio Shack store manager can special-order thousands of parts and supplies not listed in our catalog-iubes, linear and digital ILs, modules, diodes, transisters, crystals, phone carfridges, styli and computer accessories. Delivery time for most items is one week. Come in and order today!

Mini-Notebook Series

All books feature building tips and easy-to-read schematic diagrams. Use these proven circuits as starting points for your own designs!

Subject	Cat. No.	Only
Timer ICs	$276-5010$.99
Op Amps	$276-5011$	1.49
Optoelectronics	$276-5012$	1.49
Semiconductors	$276-5013$	1.49
Digital Logic	$276-5014$	1.49
Communications	$276-5015$	1.49

Computer Hookups

(2) CTS 256-AL2 Text-to-Speech IC. Translates ASCII into control data for synthesizer. Requires 10 MHz crystal (available via specialorder). \#276-1786
16.95

Attention-Getting

 Sounds and Sights
(9)
(8) Tri-Sound Electronic Siren. 129 Each

The MC1488 quad line driver and its companion receiver provide a complete interface between THL and RS-232C
MC1488 RS 232 Quad Line Driver. \#276-2520
MC1489 RS232 Quad Line Receiver. \#276-2521
1.29

4000-Series CMOS ISs With Pin-Out and Specs

Type	Cat. No	Each
4001	$276-2401$.79
4011	$276-2411$	79
4013	$276-2413$	1.19
4017	$276-2417$	1.49
4049	$276-2449$.99
4066	$276-2466$	1.19

Fast Fuse Fixes

(10) Pigtail Fuse Adapter. Easy! Snaps over blown fuse, accepts $11 / 4 \times 1 / 4^{1 "}$ replacement fuse. Ideal for TV service. \#270-1219 . . 999 (11) Solderless Holder. \#270-1211, 99¢ (12) Panel Holder. \#270-365 . . . 99¢

Switch-A-Rama!

(17) Lighted SPDT Push-On/Off. 3 amps at 120 VAC. 12 -volt lamp. $1 / 2^{\prime \prime} \mathrm{mtg}$, hole. \#275-676
(18) Automotive Switch \& Lamp Panel. Rated 6A, 12 V. \#275.703 2.99 (19) Submini Toggles. 3 A, 125 VAC. SPST. \#275-612, 1.89 SPDT. \#275-613, 1.99

Subminiature "D" Connectors.

Type	Positions	Cat. No.	Each
Male	9	276.1537	1.49
Female	9	276.1538	2.49
Hood	9	276.1539	1.99

Fig.	Type	Positions	Cat. No.	Each
3	Male	25	$276-1547$	1.99
4	Female	25	$276-1548$	2.99
5	Hood	25	$276-1549$	1.99

(6)
(6) Shielded 25-Position Hood. For EMI RFI protection. \#276-1536
(7) Multipurpose Hood. Use as hood or null modem foundation. \#276-1520, 1.79

Wireless Remote Control System

Never Enter
a Dark House! 5995

Turn lights and appliances on/off from driveway, porch, yard, inside. Includes one $15-\mathrm{amp}$ receive module. Add up to 3 more Plug 'n Power ${ }^{\text {ru }}$ receiver modules, any time. UL listed. \#61-2675

Dual-Tracking DC Supply

 69^{95}Switchable Volt/Amp Meter
Independent or "Slave" Modes
Quality and performance you wouldn't expect to find at this low price-check the features! 0 to 15 VDC adjustable output, up to to 30 VDC in series mode. Fuse protection, vented steel cabinet. 1 amp per side, max. UL listed AC. \#22-121

Let Shack ${ }^{\text {® }}$ Supply Your Power Supply

(13) 120 VAC Power Transformers.

(16) $2200 \mu \mathrm{~F}$ Filter Capacitor. 50

WVDC. \#272-1048

.3 .49

Bench Digital Multimeter

99^{95}

Memory
 Storage!

Pushbutton operation, accuracy and features that compare with meters costing much more! Full autoranging. High-contrast LC display plus built-in 31-position bargraph. Transistor checker, $H_{\text {FE }}$ test, buzzer continuity. $2^{11 / 16 \times 8 \times 43 / 4^{\prime \prime} \text {. With }}$ probes and manual. Batteries extra. \#22-195

Over 1000 items in stock: Binding posts, Books, Breadboards, Buzzers, Capacitors, Chokes, Clips, Coax, Connectors, Fuses, Hardware, ICs, Jacks, Knobs, Lamps, Multitesters, PC Board́s, Plugs,

YOU NEED DISTRIBUTORS FOR JUST-IN-TIME

et's not get lost in the buzzwords. Timely scheduling of component deliveries is not new. . . it's been at the forefront of the growth of industrial electronic distribution. Distributors have been stocking the quantity inventories necessary to parallel your production schedules for over a quarter of a century.

But your distributor is more than just a convenient, nearby source for OEM product. You also count on him to have on hand the important single piece you suddenly need. . to locate those hard-to-find replacement parts . . . to keep your lines from shutting down for want of missing components.

Your distributor is your key resource. . . for just in time, for just in case.

Why are we, as electronics manufacturers, "pushing" distribution? Because it's our way of serving you better! It makes our wares more accessible to more buyers; it speeds our components to you faster than we could deliver them. And by extending our sales, warehouse, and credit capabilities, distributors help us keep down our costs, and hence your price!

The sponsors of this message are among over 150 members firms of the Electronic Industries Association, Distributor Products Division, all committed to marketing through distributors, because it benefits buyer and seller. Want more information? Contact Herbert Rowe, Senior Vice President, EIA Components Group, 2001 Eye Street, N.W., Washington, D.C. 20006. Telephone (202) 457-4930.

Alpha Wire Corporation

Wire, Cable, Tubing Connectors

AMP Incorporated

Electrical/Electronic Connectors; IC Sockets; PCB Switches
Amphenol Products
Amphenol, Bendix \& Spectra-Strip Connectors, Cable \& Ample Assemblies
Arrow Hart Division/Cooper Industries
Power \& Control Switches
Belden Electronic Wire \& Cable
Thermosetting. Thermoplastic Wire \& Cable for Electronic Applications
Carol Cable Company, Inc.
Electronic and Electrical Wire and Cable and Power Supply Cords
Cornell-Dubilier Electronics, Inc.
Capacitors, Relays, EMI Filters \& EMI Systems Engineering Services
Corning Glass Works,

CORNING ELECTRONICS

MLCC Capacitors (leaded) and Chips, Power \& Glass Capacitors, Fixed Metal Film Resistors, Resistor Chips, Resistor \& Capacitor Networks (standard \& customs), and Tantalum Capacitors

DİSTRIBUTOR
PRODUCTS
DIVISION

CTS Corporation
DIP Switches, DIP/SIP Resistor Networks, Hybrids, Clock Oscillators, Crystals, Potentiometers \& Rotary Switches

Dale Electronics, Inc

Resistors, Networks, Oscillators, Displays, Connectors Inductors \& Thermistors, Electronic Components
Lamptronix Co., Ltd.
Minialure/Subminiature, \& incandescent \& Neon Lamps
Matrix Science Corporation
MIL-C-38999, MLL-C-24308, MIL-C-83723, MIL-C-5015 \& MIL-C-81714
Murata Erie North America, Inc.
Monolithics, Discs, Variable Capacitors; Potentiometers RFI/EMI Filters; Crystais, Oscillators; Piezo Alarms: and High Voltage Products
NTE Electronics, Inc
Semiconductors, Flámeproot Resistors, Wire-ties
Ohmite/A North American Philips Company Resistors, Rheostats, \& Control Components
Perma Power Electronics, Inc.
Perma Power Eystems. Amplifiers, Power Line.Surge Suppressors \& Multiple Outlet Strips

Philips ECG/

A North American Phillps Company
Semiconductors, Picture Tubes. Receiving Tubes \&
Chemicals
Potter \& Brumfield
Electromechanical. Time Delay, \& Solid State Relays: VO Modules, Circuit Breakers
Quam-Nichols Co., Inc.
Loudspeakers and Commercial Sound Products
RCA Distributor \& S.P.Divison
Electronic Parts, Semiconductor Devices, Receiving. Industrial \& Picture Tubes, Video Tape \& Accessories
SL Waber, A Division of SL Industries, Inc. Surge \& Noise Suppressors, Uninterruptible Power Supplies, Multiple Outiet Strips

Simpson Electric Co.

Analog \& Digital Panel Meters, Meter Relays, VOM's. DMM's. Electrical-Electronic Test Equipment, Elapsed Time \& Frequency Meters
Switcheraft, Inc.
Switches, Connectors, Fiber Optic Connectors, Jacks, Plugs, Keyboards, Jacktields \& Audio Accessories
Waldom Electronics
Capacitors, Connectors, Hardware, PCB Accessories, Relays, Switches, Lamps/Lights, IC Sockets, Terminals \& Tools

TEST EQUIPMENT THAT MEASURES UP TO YOUR

 SPECIFICATIONS

DMN-300 \$79.95

3.5 D.GIT JNM / MULTITESTER Our bert rocsi, A highly accurate, fut funcfion DMM o dec whth many extra features. Audible coitnliby capacitance, ira isistor.
tempernt sFand conductance all in on handtemperit a'亏 and conductance all in ons handbattery ircladod

- Basic CC ascl.racy: plus or minus Q.25\% * DC vhage $200 \mathrm{mv}-1000 \mathrm{v}, 5$ ra iges * AC valtane $=200 \mathrm{mv}-750 \mathrm{v}, 5$ ranges - Resisca ice: 200 ohms - 20 M ohrrs, 6 rarges
- $\mathrm{AC} / \mathrm{DC}$ rument 200 A - $10 \mathrm{~A}, 6$ anges * Capa citamer: 2000pf - 20uff. 3 rar ges Temperaurs tarter: $0^{6}-2000^{\circ}$ F Condictince: 200 ns
* Fully Jve-le ac protected
- Inputirifecanca 10 M ohm

DMM-200 \$40.95

3.5 DIGIT FULL FUNCTIC: DIAN High accuracy. 20 amp current capasit tyanc many range settings make this model ced fo-fands-free operation. 2000 hour viter fo with standard $9 v$ cell. Probes a 1 balen ncluded

- Basic DC accuracy: plus or minus 0 2:\%
- DC voltage: $200 \mathrm{mv}-1000 \mathrm{v}, 5$ arges
- AC voltage: $200 \mathrm{mv}-750 \mathrm{v}, 5$ arges

Resistance 200 ohms - 20M otsis.
6 ranges

* AC, DC current: 200uA 20A Eirnnges - Fully over load protected
$180 \times 85 \times 37 \mathrm{~mm}$ ohm
* $180 \times 86 \times 37 \mathrm{~mm}$, weighs 320 g 4mie

MODEL $2000 \quad \$ 349.95$
20 MHz DUAL TRACE OECLLOSCCPE Model 2000 combines useff eatures and exacting quality. Frequency calculazi 27 and shase mecsurement are quick and easy in the X-Y Mode. Service technicians will appreciate the TV Sync circuitry for viewing TV-V and TV-H as wial as accurate syrichronization of the Video Signal, Elankang Pedestals, VITS and Verticle/Horizontal sync wilses.

* Lab quality compensated $10 x$ probes included
* Builk-in component tester
* X-Y operation * Bright 5° CRT * TV Sync filter

DMN-700

$\$ 49.95$

3.5 DGEIT \&U'JPENGING DMa

Autoragy eovrenance o-fully manual ope arion. Selestathe -1 OMM mode permit accirie n-circut esistance measurement mode or nazsernentis functions to ar modire Frcbes t ant readirc. Frcbes an t natery included

- Basic DC accurasy phys or minus 0.5%
- DC vilage: 20Jm *000v, autorangies

AC is rran k el ranges

* AC voluge: iv 750 c autoranging
* Resistance: 203 manisa ranges $0 \mathrm{~m}=-20 \mathrm{M}$ ohms.
auto anging
* ACi XC cuirent: 20 ma 10A, 2 ranges
- Fullr overload p otecrad
- Audi sle-canti vily leste
* Inper inpeda ice 10M 3hm

DMM-100

$\$ 29.95$

3.5 DIGIT PECKET SIZE DMM

Sr irt-pocket pori atal- y u ch no compromise in teatures σ^{-}arc urary, Large, easy to read 5 LCD dispay ?CC日 ho irbettery life with standard 9 , zel grondes pver two years of arsrage usr. Trcke: and bat er, included.

- Basic DC asciracy pluzo minus 0.5\%

DC voltage 2, DOOv. 4 za nges
AC voltage 2) 7 TE 2 ranges

- Resistance 24 ohrt : - N o oms, 4 ranges - DC current 2 TA - 2f 4 ranjes
- Fully ove - laac orsi rcter
- mpur imfedar ce: 1 JM ch n
- $130 \times 75 \times 2$ \&rnन, weche 195 grams

$-C^{1: 5=}$

 DPM-100D

cheriont
4
$\$ 54.95$

3.5 DIGIT PROBE TYPE DMM

Autoranging, pen style design for the ditmate in portability and ease of use. Custont 80 pin LSI chip increases reliability. Audible continuity tester and data hold foamure for addind convenience. Case, test leats and batteries includect.

- Basic DC zecumacy plis or minus 1\% * DC voltage: $2 v-500 \mathrm{v}$, autotanging - Resistance 2 k ohms - 2 M ohms. auto*anging
* Fully over-bad protected
- Inpur imperance: 11 M chm
- $162 \times 28 \times 17 \mathrm{~mm}$, weighs 75 grams

ORDER TOLL FREE

H:JDR INSTRUMENTS
110 Knowles Drive, Los Gatos, CA 95030 (408) 866-6200 • FAX (408) 378-8927 • Telex 171-110 800-538-5000

OR VISTT OUR RETAIL STORE 1256 SOUTH BASCOM AVE. SAN JOSE, CA. (408) 947-8881 CIRCLE 59 ON FREE INFDRMATION CARD

[^0]: V-1100A DC to 100 MHz , Quad Channels, Delayed Sweep $\$ 2240$. Save $\$ 250$!

 V-680 DC to 60 MHz , Triple Channels, Delayed Sweep \$1340. Save \$150! V-423 DC to 40 MHz , Dual Channels, Single Time Base Delayed Sweep $\$ 745$. Save $\$ 250$!
 V-1050F DC to 100 MHz , Quad Channels, Delayed Sweep \$1445. Save \$150!
 V-650F DC to 60 MHz , Triple Channels, Delayed Sweep \$1070. Save \$125!
 V-422 DC to 40 MHz , Dual Channels \$795. Save \$130!

 V-509 DC to 50 MHz , Dual Channels, Delayed Sweep \$1195. Save \$250! V-058G DC to 5 MHz , Dual Channels \$838. Save \$100!
 V-134 DC to 10 MHz , Dual Channels $\$ 1420$. Save $\$ 200$!

 V-425 DC to 40 MHz . Dual Channels \$845. Save \$150!

[^1]: may also be used) Miscellaneous
 F1-1 amp slo-blow fuse S1-eight-position DIP switch P1,P2-0.1" 2-pin Molex connector XTAL1-3.58-MHz color-burst crystal Other components
 L1-pick-up coil (ARA part \#2701278), magnets, strap mount (ARA part \#2701279), wire, solder, PC boards, etc.
 Note: ARA cruise control parts are available through your local automotive supply house. They may also be ordered as follows from Dakota Digital, R.R. 1 Box 83 Canistota, SD 57012: display PC board (\#430105), \$6.95; main PC board (\#430106), \$12.95; Pick-up coil (\#2701278), \$11.95; Magnets (\#2701279) \$4.75 (for a set of 4). Add $\$ 1.50$ for shipping and handling. South Dakota residents add 5% sales tax.

[^2]: COMMAND PRODUCTIONS
 FCC LICENSE TRAINING, Dept 90
 P.O. Box 2223, San Francisco, CA 94126

 Please rush FREE details immediately!
 Name
 ADDRESS
 CITY

[^3]: WE GUARANTEE THAT THE EDS-59C SEMIANALYZER WILL MAKE YOU A FASTER, LESS - FRUSTRATED "SUPERTECH", OR YOUR MONEY BACK. TRY ONE FOR 60 DAYS, AND IF IT DOESN'T EARN ITS KEEP, SHIP IT BACK FOR A FULL REFUND.

